ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexun Unicode version

Theorem rexun 3384
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
rexun  |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )

Proof of Theorem rexun
StepHypRef Expression
1 df-rex 2514 . 2  |-  ( E. x  e.  ( A  u.  B ) ph  <->  E. x ( x  e.  ( A  u.  B
)  /\  ph ) )
2 19.43 1674 . . 3  |-  ( E. x ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
)  <->  ( E. x
( x  e.  A  /\  ph )  \/  E. x ( x  e.  B  /\  ph )
) )
3 elun 3345 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
43anbi1i 458 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
5 andir 824 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
64, 5bitri 184 . . . 4  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
) )
76exbii 1651 . . 3  |-  ( E. x ( x  e.  ( A  u.  B
)  /\  ph )  <->  E. x
( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
8 df-rex 2514 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
9 df-rex 2514 . . . 4  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
108, 9orbi12i 769 . . 3  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  B  ph )  <->  ( E. x ( x  e.  A  /\  ph )  \/  E. x ( x  e.  B  /\  ph ) ) )
112, 7, 103bitr4i 212 . 2  |-  ( E. x ( x  e.  ( A  u.  B
)  /\  ph )  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
121, 11bitri 184 1  |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 713   E.wex 1538    e. wcel 2200   E.wrex 2509    u. cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201
This theorem is referenced by:  rexprg  3718  rextpg  3720  iunxun  4044  finexdc  7060  nninfwlpoimlemg  7338  exfzdc  10441  dvdsprmpweqnn  12854
  Copyright terms: Public domain W3C validator