ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexun Unicode version

Theorem rexun 3302
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
rexun  |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )

Proof of Theorem rexun
StepHypRef Expression
1 df-rex 2450 . 2  |-  ( E. x  e.  ( A  u.  B ) ph  <->  E. x ( x  e.  ( A  u.  B
)  /\  ph ) )
2 19.43 1616 . . 3  |-  ( E. x ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
)  <->  ( E. x
( x  e.  A  /\  ph )  \/  E. x ( x  e.  B  /\  ph )
) )
3 elun 3263 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
43anbi1i 454 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ph ) )
5 andir 809 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ph )  <->  ( (
x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
64, 5bitri 183 . . . 4  |-  ( ( x  e.  ( A  u.  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph )
) )
76exbii 1593 . . 3  |-  ( E. x ( x  e.  ( A  u.  B
)  /\  ph )  <->  E. x
( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  ph ) ) )
8 df-rex 2450 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
9 df-rex 2450 . . . 4  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
108, 9orbi12i 754 . . 3  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  B  ph )  <->  ( E. x ( x  e.  A  /\  ph )  \/  E. x ( x  e.  B  /\  ph ) ) )
112, 7, 103bitr4i 211 . 2  |-  ( E. x ( x  e.  ( A  u.  B
)  /\  ph )  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
121, 11bitri 183 1  |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 698   E.wex 1480    e. wcel 2136   E.wrex 2445    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120
This theorem is referenced by:  rexprg  3628  rextpg  3630  iunxun  3945  finexdc  6868  exfzdc  10175  dvdsprmpweqnn  12267
  Copyright terms: Public domain W3C validator