ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettx Unicode version

Theorem xmettx 14678
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmettx.j  |-  J  =  ( MetOpen `  M )
xmettx.k  |-  K  =  ( MetOpen `  N )
xmettx.l  |-  L  =  ( MetOpen `  P )
Assertion
Ref Expression
xmettx  |-  ( ph  ->  L  =  ( J 
tX  K ) )
Distinct variable groups:    u, M, v   
u, N, v    u, X, v    u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    J( v, u)    K( v, u)    L( v, u)

Proof of Theorem xmettx
Dummy variables  j  k  m  n  x  y  r  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . 3  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . 3  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . 3  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
4 xmettx.j . . 3  |-  J  =  ( MetOpen `  M )
5 xmettx.k . . 3  |-  K  =  ( MetOpen `  N )
6 xmettx.l . . 3  |-  L  =  ( MetOpen `  P )
71, 2, 3, 4, 5, 6xmettxlem 14677 . 2  |-  ( ph  ->  L  C_  ( J  tX  K ) )
8 eqid 2193 . . . . . . . . . . . 12  |-  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  =  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )
98elrnmpog 6031 . . . . . . . . . . 11  |-  ( w  e.  _V  ->  (
w  e.  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) ) )
109elv 2764 . . . . . . . . . 10  |-  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
1110biimpi 120 . . . . . . . . 9  |-  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
1211adantl 277 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
13 xpeq1 4673 . . . . . . . . . 10  |-  ( r  =  x  ->  (
r  X.  s )  =  ( x  X.  s ) )
1413eqeq2d 2205 . . . . . . . . 9  |-  ( r  =  x  ->  (
w  =  ( r  X.  s )  <->  w  =  ( x  X.  s
) ) )
15 xpeq2 4674 . . . . . . . . . 10  |-  ( s  =  y  ->  (
x  X.  s )  =  ( x  X.  y ) )
1615eqeq2d 2205 . . . . . . . . 9  |-  ( s  =  y  ->  (
w  =  ( x  X.  s )  <->  w  =  ( x  X.  y
) ) )
1714, 16cbvrex2v 2740 . . . . . . . 8  |-  ( E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s )  <->  E. x  e.  J  E. y  e.  K  w  =  ( x  X.  y
) )
1812, 17sylib 122 . . . . . . 7  |-  ( (
ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  ->  E. x  e.  J  E. y  e.  K  w  =  ( x  X.  y ) )
19 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  ->  w  =  ( x  X.  y ) )
20 simplll 533 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  ->  ph )
21 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  ->  x  e.  J )
22 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  -> 
y  e.  K )
234mopntopon 14611 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
242, 23syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2524adantr 276 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  J  e.  (TopOn `  X
) )
26 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  x  e.  J )
27 toponss 14194 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
2825, 26, 27syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  x  C_  X )
295mopntopon 14611 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
303, 29syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3130adantr 276 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  K  e.  (TopOn `  Y
) )
32 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
y  e.  K )
33 toponss 14194 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  (TopOn `  Y )  /\  y  e.  K )  ->  y  C_  Y )
3431, 32, 33syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
y  C_  Y )
35 xpss12 4766 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  X  /\  y  C_  Y )  -> 
( x  X.  y
)  C_  ( X  X.  Y ) )
3628, 34, 35syl2anc 411 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( x  X.  y
)  C_  ( X  X.  Y ) )
371, 2, 3xmetxp 14675 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
38 unirnbl 14591 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  U. ran  ( ball `  P )  =  ( X  X.  Y ) )
3937, 38syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U. ran  ( ball `  P )  =  ( X  X.  Y ) )
4039adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  U. ran  ( ball `  P
)  =  ( X  X.  Y ) )
4136, 40sseqtrrd 3218 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( x  X.  y
)  C_  U. ran  ( ball `  P ) )
422ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  M  e.  ( *Met `  X ) )
43 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  x  e.  J )
44 xp1st 6218 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( x  X.  y )  ->  ( 1st `  j )  e.  x )
4544adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  ( 1st `  j )  e.  x )
464mopni2 14651 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ( *Met `  X )  /\  x  e.  J  /\  ( 1st `  j
)  e.  x )  ->  E. m  e.  RR+  ( ( 1st `  j
) ( ball `  M
) m )  C_  x )
4742, 43, 45, 46syl3anc 1249 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  E. m  e.  RR+  ( ( 1st `  j ) ( ball `  M ) m ) 
C_  x )
483ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  N  e.  ( *Met `  Y ) )
49 simplrr 536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  y  e.  K )
50 xp2nd 6219 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( x  X.  y )  ->  ( 2nd `  j )  e.  y )
5150adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  ( 2nd `  j )  e.  y )
525mopni2 14651 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( *Met `  Y )  /\  y  e.  K  /\  ( 2nd `  j
)  e.  y )  ->  E. n  e.  RR+  ( ( 2nd `  j
) ( ball `  N
) n )  C_  y )
5348, 49, 51, 52syl3anc 1249 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  E. n  e.  RR+  ( ( 2nd `  j ) ( ball `  N ) n ) 
C_  y )
5453adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  ->  E. n  e.  RR+  (
( 2nd `  j
) ( ball `  N
) n )  C_  y )
55 blf 14578 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  ( ball `  P ) : ( ( X  X.  Y )  X.  RR* )
--> ~P ( X  X.  Y ) )
5637, 55syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ball `  P
) : ( ( X  X.  Y )  X.  RR* ) --> ~P ( X  X.  Y ) )
5756ffnd 5404 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ball `  P
)  Fn  ( ( X  X.  Y )  X.  RR* ) )
5857ad4antr 494 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ball `  P )  Fn  ( ( X  X.  Y )  X.  RR* ) )
5936sselda 3179 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  j  e.  ( X  X.  Y
) )
6059ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
j  e.  ( X  X.  Y ) )
61 rpxr 9727 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  RR+  ->  m  e. 
RR* )
6261ad2antrl 490 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  ->  m  e.  RR* )
6362adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  m  e.  RR* )
64 rpxr 9727 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  RR+  ->  n  e. 
RR* )
6564ad2antrl 490 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  n  e.  RR* )
66 xrmincl 11409 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  RR*  /\  n  e.  RR* )  -> inf ( { m ,  n } ,  RR* ,  <  )  e.  RR* )
6763, 65, 66syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> inf ( { m ,  n } ,  RR* ,  <  )  e.  RR* )
68 fnovrn 6066 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ball `  P
)  Fn  ( ( X  X.  Y )  X.  RR* )  /\  j  e.  ( X  X.  Y
)  /\ inf ( {
m ,  n } ,  RR* ,  <  )  e.  RR* )  ->  (
j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) )  e. 
ran  ( ball `  P
) )
6958, 60, 67, 68syl3anc 1249 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  e.  ran  ( ball `  P ) )
70 eleq2 2257 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( j (
ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  ->  ( j  e.  k  <->  j  e.  ( j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) ) ) )
71 sseq1 3202 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( j (
ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  ->  ( k  C_  ( x  X.  y
)  <->  ( j (
ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( x  X.  y ) ) )
7270, 71anbi12d 473 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( j (
ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  ->  ( (
j  e.  k  /\  k  C_  ( x  X.  y ) )  <->  ( j  e.  ( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  /\  ( j
( ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( x  X.  y ) ) ) )
7372adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  /\  j  e.  ( x  X.  y ) )  /\  ( m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  /\  k  =  ( j
( ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) ) )  ->  (
( j  e.  k  /\  k  C_  (
x  X.  y ) )  <->  ( j  e.  ( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  /\  ( j
( ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( x  X.  y ) ) ) )
7437ad4antr 494 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
75 simplrl 535 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  m  e.  RR+ )
76 simprl 529 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  n  e.  RR+ )
77 xrminrpcl 11417 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  RR+  /\  n  e.  RR+ )  -> inf ( { m ,  n } ,  RR* ,  <  )  e.  RR+ )
7875, 76, 77syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> inf ( { m ,  n } ,  RR* ,  <  )  e.  RR+ )
79 blcntr 14584 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  ( *Met `  ( X  X.  Y ) )  /\  j  e.  ( X  X.  Y )  /\ inf ( { m ,  n } ,  RR* ,  <  )  e.  RR+ )  ->  j  e.  ( j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) ) )
8074, 60, 78, 79syl3anc 1249 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
j  e.  ( j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) ) )
8142ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  M  e.  ( *Met `  X ) )
8248ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  N  e.  ( *Met `  Y ) )
831, 81, 82, 67, 60xmetxpbl 14676 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  =  ( ( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  X.  ( ( 2nd `  j
) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) ) ) )
8428adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  x  C_  X )
8584, 45sseldd 3180 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  ( 1st `  j )  e.  X )
8685ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( 1st `  j
)  e.  X )
87 xrmin1inf 11410 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  RR*  /\  n  e.  RR* )  -> inf ( { m ,  n } ,  RR* ,  <  )  <_  m )
8863, 65, 87syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> inf ( { m ,  n } ,  RR* ,  <  )  <_  m )
89 ssbl 14594 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  ( *Met `  X
)  /\  ( 1st `  j )  e.  X
)  /\  (inf ( { m ,  n } ,  RR* ,  <  )  e.  RR*  /\  m  e.  RR* )  /\ inf ( { m ,  n } ,  RR* ,  <  )  <_  m )  -> 
( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( ( 1st `  j
) ( ball `  M
) m ) )
9081, 86, 67, 63, 88, 89syl221anc 1260 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( ( 1st `  j
) ( ball `  M
) m ) )
91 simplrr 536 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 1st `  j
) ( ball `  M
) m )  C_  x )
9290, 91sstrd 3189 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  x )
9334adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  y  C_  Y )
9493, 51sseldd 3180 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  ( 2nd `  j )  e.  Y )
9594ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( 2nd `  j
)  e.  Y )
96 xrmin2inf 11411 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  RR*  /\  n  e.  RR* )  -> inf ( { m ,  n } ,  RR* ,  <  )  <_  n )
9763, 65, 96syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> inf ( { m ,  n } ,  RR* ,  <  )  <_  n )
98 ssbl 14594 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  ( *Met `  Y
)  /\  ( 2nd `  j )  e.  Y
)  /\  (inf ( { m ,  n } ,  RR* ,  <  )  e.  RR*  /\  n  e.  RR* )  /\ inf ( { m ,  n } ,  RR* ,  <  )  <_  n )  -> 
( ( 2nd `  j
) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( ( 2nd `  j
) ( ball `  N
) n ) )
9982, 95, 67, 65, 97, 98syl221anc 1260 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 2nd `  j
) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( ( 2nd `  j
) ( ball `  N
) n ) )
100 simprr 531 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 2nd `  j
) ( ball `  N
) n )  C_  y )
10199, 100sstrd 3189 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 2nd `  j
) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  y )
102 xpss12 4766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  x  /\  ( ( 2nd `  j ) ( ball `  N )inf ( { m ,  n } ,  RR* ,  <  )
)  C_  y )  ->  ( ( ( 1st `  j ) ( ball `  M )inf ( { m ,  n } ,  RR* ,  <  )
)  X.  ( ( 2nd `  j ) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) ) ) 
C_  ( x  X.  y ) )
10392, 101, 102syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( ( 1st `  j ) ( ball `  M )inf ( { m ,  n } ,  RR* ,  <  )
)  X.  ( ( 2nd `  j ) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) ) ) 
C_  ( x  X.  y ) )
10483, 103eqsstrd 3215 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  C_  ( x  X.  y ) )
10580, 104jca 306 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( j  e.  ( j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) )  /\  ( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  C_  ( x  X.  y ) ) )
10669, 73, 105rspcedvd 2870 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  E. k  e.  ran  ( ball `  P )
( j  e.  k  /\  k  C_  (
x  X.  y ) ) )
10754, 106rexlimddv 2616 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  ->  E. k  e.  ran  ( ball `  P )
( j  e.  k  /\  k  C_  (
x  X.  y ) ) )
10847, 107rexlimddv 2616 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  E. k  e.  ran  ( ball `  P
) ( j  e.  k  /\  k  C_  ( x  X.  y
) ) )
109108ralrimiva 2567 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  A. j  e.  (
x  X.  y ) E. k  e.  ran  ( ball `  P )
( j  e.  k  /\  k  C_  (
x  X.  y ) ) )
11041, 109jca 306 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( ( x  X.  y )  C_  U. ran  ( ball `  P )  /\  A. j  e.  ( x  X.  y ) E. k  e.  ran  ( ball `  P )
( j  e.  k  /\  k  C_  (
x  X.  y ) ) ) )
111 blex 14555 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  ( ball `  P )  e. 
_V )
11237, 111syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ball `  P
)  e.  _V )
113112adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( ball `  P )  e.  _V )
114 rnexg 4927 . . . . . . . . . . . . 13  |-  ( (
ball `  P )  e.  _V  ->  ran  ( ball `  P )  e.  _V )
115 eltg2 14221 . . . . . . . . . . . . 13  |-  ( ran  ( ball `  P
)  e.  _V  ->  ( ( x  X.  y
)  e.  ( topGen ` 
ran  ( ball `  P
) )  <->  ( (
x  X.  y ) 
C_  U. ran  ( ball `  P )  /\  A. j  e.  ( x  X.  y ) E. k  e.  ran  ( ball `  P
) ( j  e.  k  /\  k  C_  ( x  X.  y
) ) ) ) )
116113, 114, 1153syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( ( x  X.  y )  e.  (
topGen `  ran  ( ball `  P ) )  <->  ( (
x  X.  y ) 
C_  U. ran  ( ball `  P )  /\  A. j  e.  ( x  X.  y ) E. k  e.  ran  ( ball `  P
) ( j  e.  k  /\  k  C_  ( x  X.  y
) ) ) ) )
117110, 116mpbird 167 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( x  X.  y
)  e.  ( topGen ` 
ran  ( ball `  P
) ) )
11820, 21, 22, 117syl12anc 1247 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  -> 
( x  X.  y
)  e.  ( topGen ` 
ran  ( ball `  P
) ) )
11919, 118eqeltrd 2270 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  ->  w  e.  ( topGen ` 
ran  ( ball `  P
) ) )
120119ex 115 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( w  =  ( x  X.  y )  ->  w  e.  (
topGen `  ran  ( ball `  P ) ) ) )
121120rexlimdvva 2619 . . . . . . 7  |-  ( (
ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  -> 
( E. x  e.  J  E. y  e.  K  w  =  ( x  X.  y )  ->  w  e.  (
topGen `  ran  ( ball `  P ) ) ) )
12218, 121mpd 13 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  ->  w  e.  ( topGen ` 
ran  ( ball `  P
) ) )
123122ex 115 . . . . 5  |-  ( ph  ->  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  ->  w  e.  ( topGen `  ran  ( ball `  P ) ) ) )
124123ssrdv 3185 . . . 4  |-  ( ph  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  C_  ( topGen `  ran  ( ball `  P ) ) )
1254mopntop 14612 . . . . . . . 8  |-  ( M  e.  ( *Met `  X )  ->  J  e.  Top )
1262, 125syl 14 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
1275mopntop 14612 . . . . . . . 8  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  Top )
1283, 127syl 14 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
129 mpoexga 6265 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
130126, 128, 129syl2anc 411 . . . . . 6  |-  ( ph  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
131 rnexg 4927 . . . . . 6  |-  ( ( r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
132130, 131syl 14 . . . . 5  |-  ( ph  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  e. 
_V )
13337, 111, 1143syl 17 . . . . 5  |-  ( ph  ->  ran  ( ball `  P
)  e.  _V )
134 tgss3 14246 . . . . 5  |-  ( ( ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  e. 
_V  /\  ran  ( ball `  P )  e.  _V )  ->  ( ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) 
C_  ( topGen `  ran  ( ball `  P )
)  <->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  C_  ( topGen `  ran  ( ball `  P ) ) ) )
135132, 133, 134syl2anc 411 . . . 4  |-  ( ph  ->  ( ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  C_  ( topGen `  ran  ( ball `  P ) )  <->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) 
C_  ( topGen `  ran  ( ball `  P )
) ) )
136124, 135mpbird 167 . . 3  |-  ( ph  ->  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  C_  ( topGen ` 
ran  ( ball `  P
) ) )
137 eqid 2193 . . . . 5  |-  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  =  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )
138137txval 14423 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
139126, 128, 138syl2anc 411 . . 3  |-  ( ph  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
1406mopnval 14610 . . . 4  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  L  =  ( topGen `  ran  ( ball `  P )
) )
14137, 140syl 14 . . 3  |-  ( ph  ->  L  =  ( topGen ` 
ran  ( ball `  P
) ) )
142136, 139, 1413sstr4d 3224 . 2  |-  ( ph  ->  ( J  tX  K
)  C_  L )
1437, 142eqssd 3196 1  |-  ( ph  ->  L  =  ( J 
tX  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760    C_ wss 3153   ~Pcpw 3601   {cpr 3619   U.cuni 3835   class class class wbr 4029    X. cxp 4657   ran crn 4660    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   1stc1st 6191   2ndc2nd 6192   supcsup 7041  infcinf 7042   RR*cxr 8053    < clt 8054    <_ cle 8055   RR+crp 9719   topGenctg 12865   *Metcxmet 14032   ballcbl 14034   MetOpencmopn 14037   Topctop 14165  TopOnctopon 14178    tX ctx 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-tx 14421
This theorem is referenced by:  txmetcnp  14686
  Copyright terms: Public domain W3C validator