ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettx Unicode version

Theorem xmettx 13150
Description: The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmettx.j  |-  J  =  ( MetOpen `  M )
xmettx.k  |-  K  =  ( MetOpen `  N )
xmettx.l  |-  L  =  ( MetOpen `  P )
Assertion
Ref Expression
xmettx  |-  ( ph  ->  L  =  ( J 
tX  K ) )
Distinct variable groups:    u, M, v   
u, N, v    u, X, v    u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    J( v, u)    K( v, u)    L( v, u)

Proof of Theorem xmettx
Dummy variables  j  k  m  n  x  y  r  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . 3  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . 3  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . 3  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
4 xmettx.j . . 3  |-  J  =  ( MetOpen `  M )
5 xmettx.k . . 3  |-  K  =  ( MetOpen `  N )
6 xmettx.l . . 3  |-  L  =  ( MetOpen `  P )
71, 2, 3, 4, 5, 6xmettxlem 13149 . 2  |-  ( ph  ->  L  C_  ( J  tX  K ) )
8 eqid 2165 . . . . . . . . . . . 12  |-  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  =  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )
98elrnmpog 5954 . . . . . . . . . . 11  |-  ( w  e.  _V  ->  (
w  e.  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) ) )
109elv 2730 . . . . . . . . . 10  |-  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
1110biimpi 119 . . . . . . . . 9  |-  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
1211adantl 275 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
13 xpeq1 4618 . . . . . . . . . 10  |-  ( r  =  x  ->  (
r  X.  s )  =  ( x  X.  s ) )
1413eqeq2d 2177 . . . . . . . . 9  |-  ( r  =  x  ->  (
w  =  ( r  X.  s )  <->  w  =  ( x  X.  s
) ) )
15 xpeq2 4619 . . . . . . . . . 10  |-  ( s  =  y  ->  (
x  X.  s )  =  ( x  X.  y ) )
1615eqeq2d 2177 . . . . . . . . 9  |-  ( s  =  y  ->  (
w  =  ( x  X.  s )  <->  w  =  ( x  X.  y
) ) )
1714, 16cbvrex2v 2706 . . . . . . . 8  |-  ( E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s )  <->  E. x  e.  J  E. y  e.  K  w  =  ( x  X.  y
) )
1812, 17sylib 121 . . . . . . 7  |-  ( (
ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  ->  E. x  e.  J  E. y  e.  K  w  =  ( x  X.  y ) )
19 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  ->  w  =  ( x  X.  y ) )
20 simplll 523 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  ->  ph )
21 simplrl 525 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  ->  x  e.  J )
22 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  -> 
y  e.  K )
234mopntopon 13083 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
242, 23syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2524adantr 274 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  J  e.  (TopOn `  X
) )
26 simprl 521 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  x  e.  J )
27 toponss 12664 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
2825, 26, 27syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  x  C_  X )
295mopntopon 13083 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
303, 29syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3130adantr 274 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  K  e.  (TopOn `  Y
) )
32 simprr 522 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
y  e.  K )
33 toponss 12664 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  (TopOn `  Y )  /\  y  e.  K )  ->  y  C_  Y )
3431, 32, 33syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
y  C_  Y )
35 xpss12 4711 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  X  /\  y  C_  Y )  -> 
( x  X.  y
)  C_  ( X  X.  Y ) )
3628, 34, 35syl2anc 409 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( x  X.  y
)  C_  ( X  X.  Y ) )
371, 2, 3xmetxp 13147 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
38 unirnbl 13063 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  U. ran  ( ball `  P )  =  ( X  X.  Y ) )
3937, 38syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U. ran  ( ball `  P )  =  ( X  X.  Y ) )
4039adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  U. ran  ( ball `  P
)  =  ( X  X.  Y ) )
4136, 40sseqtrrd 3181 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( x  X.  y
)  C_  U. ran  ( ball `  P ) )
422ad2antrr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  M  e.  ( *Met `  X ) )
43 simplrl 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  x  e.  J )
44 xp1st 6133 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( x  X.  y )  ->  ( 1st `  j )  e.  x )
4544adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  ( 1st `  j )  e.  x )
464mopni2 13123 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ( *Met `  X )  /\  x  e.  J  /\  ( 1st `  j
)  e.  x )  ->  E. m  e.  RR+  ( ( 1st `  j
) ( ball `  M
) m )  C_  x )
4742, 43, 45, 46syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  E. m  e.  RR+  ( ( 1st `  j ) ( ball `  M ) m ) 
C_  x )
483ad2antrr 480 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  N  e.  ( *Met `  Y ) )
49 simplrr 526 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  y  e.  K )
50 xp2nd 6134 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( x  X.  y )  ->  ( 2nd `  j )  e.  y )
5150adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  ( 2nd `  j )  e.  y )
525mopni2 13123 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ( *Met `  Y )  /\  y  e.  K  /\  ( 2nd `  j
)  e.  y )  ->  E. n  e.  RR+  ( ( 2nd `  j
) ( ball `  N
) n )  C_  y )
5348, 49, 51, 52syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  E. n  e.  RR+  ( ( 2nd `  j ) ( ball `  N ) n ) 
C_  y )
5453adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  ->  E. n  e.  RR+  (
( 2nd `  j
) ( ball `  N
) n )  C_  y )
55 blf 13050 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  ( ball `  P ) : ( ( X  X.  Y )  X.  RR* )
--> ~P ( X  X.  Y ) )
5637, 55syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ball `  P
) : ( ( X  X.  Y )  X.  RR* ) --> ~P ( X  X.  Y ) )
5756ffnd 5338 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ball `  P
)  Fn  ( ( X  X.  Y )  X.  RR* ) )
5857ad4antr 486 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ball `  P )  Fn  ( ( X  X.  Y )  X.  RR* ) )
5936sselda 3142 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  j  e.  ( X  X.  Y
) )
6059ad2antrr 480 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
j  e.  ( X  X.  Y ) )
61 rpxr 9597 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  RR+  ->  m  e. 
RR* )
6261ad2antrl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  ->  m  e.  RR* )
6362adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  m  e.  RR* )
64 rpxr 9597 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  RR+  ->  n  e. 
RR* )
6564ad2antrl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  n  e.  RR* )
66 xrmincl 11207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  RR*  /\  n  e.  RR* )  -> inf ( { m ,  n } ,  RR* ,  <  )  e.  RR* )
6763, 65, 66syl2anc 409 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> inf ( { m ,  n } ,  RR* ,  <  )  e.  RR* )
68 fnovrn 5989 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ball `  P
)  Fn  ( ( X  X.  Y )  X.  RR* )  /\  j  e.  ( X  X.  Y
)  /\ inf ( {
m ,  n } ,  RR* ,  <  )  e.  RR* )  ->  (
j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) )  e. 
ran  ( ball `  P
) )
6958, 60, 67, 68syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  e.  ran  ( ball `  P ) )
70 eleq2 2230 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( j (
ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  ->  ( j  e.  k  <->  j  e.  ( j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) ) ) )
71 sseq1 3165 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( j (
ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  ->  ( k  C_  ( x  X.  y
)  <->  ( j (
ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( x  X.  y ) ) )
7270, 71anbi12d 465 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( j (
ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  ->  ( (
j  e.  k  /\  k  C_  ( x  X.  y ) )  <->  ( j  e.  ( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  /\  ( j
( ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( x  X.  y ) ) ) )
7372adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  /\  j  e.  ( x  X.  y ) )  /\  ( m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  /\  k  =  ( j
( ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) ) )  ->  (
( j  e.  k  /\  k  C_  (
x  X.  y ) )  <->  ( j  e.  ( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  /\  ( j
( ball `  P )inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( x  X.  y ) ) ) )
7437ad4antr 486 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
75 simplrl 525 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  m  e.  RR+ )
76 simprl 521 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  n  e.  RR+ )
77 xrminrpcl 11215 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  RR+  /\  n  e.  RR+ )  -> inf ( { m ,  n } ,  RR* ,  <  )  e.  RR+ )
7875, 76, 77syl2anc 409 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> inf ( { m ,  n } ,  RR* ,  <  )  e.  RR+ )
79 blcntr 13056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  ( *Met `  ( X  X.  Y ) )  /\  j  e.  ( X  X.  Y )  /\ inf ( { m ,  n } ,  RR* ,  <  )  e.  RR+ )  ->  j  e.  ( j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) ) )
8074, 60, 78, 79syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
j  e.  ( j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) ) )
8142ad2antrr 480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  M  e.  ( *Met `  X ) )
8248ad2antrr 480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  N  e.  ( *Met `  Y ) )
831, 81, 82, 67, 60xmetxpbl 13148 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  =  ( ( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  X.  ( ( 2nd `  j
) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) ) ) )
8428adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  x  C_  X )
8584, 45sseldd 3143 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  ( 1st `  j )  e.  X )
8685ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( 1st `  j
)  e.  X )
87 xrmin1inf 11208 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  RR*  /\  n  e.  RR* )  -> inf ( { m ,  n } ,  RR* ,  <  )  <_  m )
8863, 65, 87syl2anc 409 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> inf ( { m ,  n } ,  RR* ,  <  )  <_  m )
89 ssbl 13066 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  ( *Met `  X
)  /\  ( 1st `  j )  e.  X
)  /\  (inf ( { m ,  n } ,  RR* ,  <  )  e.  RR*  /\  m  e.  RR* )  /\ inf ( { m ,  n } ,  RR* ,  <  )  <_  m )  -> 
( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( ( 1st `  j
) ( ball `  M
) m ) )
9081, 86, 67, 63, 88, 89syl221anc 1239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( ( 1st `  j
) ( ball `  M
) m ) )
91 simplrr 526 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 1st `  j
) ( ball `  M
) m )  C_  x )
9290, 91sstrd 3152 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  x )
9334adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  y  C_  Y )
9493, 51sseldd 3143 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  ( 2nd `  j )  e.  Y )
9594ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( 2nd `  j
)  e.  Y )
96 xrmin2inf 11209 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  RR*  /\  n  e.  RR* )  -> inf ( { m ,  n } ,  RR* ,  <  )  <_  n )
9763, 65, 96syl2anc 409 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> inf ( { m ,  n } ,  RR* ,  <  )  <_  n )
98 ssbl 13066 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  ( *Met `  Y
)  /\  ( 2nd `  j )  e.  Y
)  /\  (inf ( { m ,  n } ,  RR* ,  <  )  e.  RR*  /\  n  e.  RR* )  /\ inf ( { m ,  n } ,  RR* ,  <  )  <_  n )  -> 
( ( 2nd `  j
) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( ( 2nd `  j
) ( ball `  N
) n ) )
9982, 95, 67, 65, 97, 98syl221anc 1239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 2nd `  j
) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  ( ( 2nd `  j
) ( ball `  N
) n ) )
100 simprr 522 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 2nd `  j
) ( ball `  N
) n )  C_  y )
10199, 100sstrd 3152 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( 2nd `  j
) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  y )
102 xpss12 4711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  j
) ( ball `  M
)inf ( { m ,  n } ,  RR* ,  <  ) )  C_  x  /\  ( ( 2nd `  j ) ( ball `  N )inf ( { m ,  n } ,  RR* ,  <  )
)  C_  y )  ->  ( ( ( 1st `  j ) ( ball `  M )inf ( { m ,  n } ,  RR* ,  <  )
)  X.  ( ( 2nd `  j ) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) ) ) 
C_  ( x  X.  y ) )
10392, 101, 102syl2anc 409 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( ( ( 1st `  j ) ( ball `  M )inf ( { m ,  n } ,  RR* ,  <  )
)  X.  ( ( 2nd `  j ) ( ball `  N
)inf ( { m ,  n } ,  RR* ,  <  ) ) ) 
C_  ( x  X.  y ) )
10483, 103eqsstrd 3178 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  C_  ( x  X.  y ) )
10580, 104jca 304 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  -> 
( j  e.  ( j ( ball `  P
)inf ( { m ,  n } ,  RR* ,  <  ) )  /\  ( j ( ball `  P )inf ( { m ,  n } ,  RR* ,  <  )
)  C_  ( x  X.  y ) ) )
10669, 73, 105rspcedvd 2836 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  /\  ( n  e.  RR+  /\  (
( 2nd `  j
) ( ball `  N
) n )  C_  y ) )  ->  E. k  e.  ran  ( ball `  P )
( j  e.  k  /\  k  C_  (
x  X.  y ) ) )
10754, 106rexlimddv 2588 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  J  /\  y  e.  K
) )  /\  j  e.  ( x  X.  y
) )  /\  (
m  e.  RR+  /\  (
( 1st `  j
) ( ball `  M
) m )  C_  x ) )  ->  E. k  e.  ran  ( ball `  P )
( j  e.  k  /\  k  C_  (
x  X.  y ) ) )
10847, 107rexlimddv 2588 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  J  /\  y  e.  K )
)  /\  j  e.  ( x  X.  y
) )  ->  E. k  e.  ran  ( ball `  P
) ( j  e.  k  /\  k  C_  ( x  X.  y
) ) )
109108ralrimiva 2539 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  A. j  e.  (
x  X.  y ) E. k  e.  ran  ( ball `  P )
( j  e.  k  /\  k  C_  (
x  X.  y ) ) )
11041, 109jca 304 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( ( x  X.  y )  C_  U. ran  ( ball `  P )  /\  A. j  e.  ( x  X.  y ) E. k  e.  ran  ( ball `  P )
( j  e.  k  /\  k  C_  (
x  X.  y ) ) ) )
111 blex 13027 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  ( ball `  P )  e. 
_V )
11237, 111syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ball `  P
)  e.  _V )
113112adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( ball `  P )  e.  _V )
114 rnexg 4869 . . . . . . . . . . . . 13  |-  ( (
ball `  P )  e.  _V  ->  ran  ( ball `  P )  e.  _V )
115 eltg2 12693 . . . . . . . . . . . . 13  |-  ( ran  ( ball `  P
)  e.  _V  ->  ( ( x  X.  y
)  e.  ( topGen ` 
ran  ( ball `  P
) )  <->  ( (
x  X.  y ) 
C_  U. ran  ( ball `  P )  /\  A. j  e.  ( x  X.  y ) E. k  e.  ran  ( ball `  P
) ( j  e.  k  /\  k  C_  ( x  X.  y
) ) ) ) )
116113, 114, 1153syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( ( x  X.  y )  e.  (
topGen `  ran  ( ball `  P ) )  <->  ( (
x  X.  y ) 
C_  U. ran  ( ball `  P )  /\  A. j  e.  ( x  X.  y ) E. k  e.  ran  ( ball `  P
) ( j  e.  k  /\  k  C_  ( x  X.  y
) ) ) ) )
117110, 116mpbird 166 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( x  X.  y
)  e.  ( topGen ` 
ran  ( ball `  P
) ) )
11820, 21, 22, 117syl12anc 1226 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  -> 
( x  X.  y
)  e.  ( topGen ` 
ran  ( ball `  P
) ) )
11919, 118eqeltrd 2243 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  /\  w  =  ( x  X.  y ) )  ->  w  e.  ( topGen ` 
ran  ( ball `  P
) ) )
120119ex 114 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( w  =  ( x  X.  y )  ->  w  e.  (
topGen `  ran  ( ball `  P ) ) ) )
121120rexlimdvva 2591 . . . . . . 7  |-  ( (
ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  -> 
( E. x  e.  J  E. y  e.  K  w  =  ( x  X.  y )  ->  w  e.  (
topGen `  ran  ( ball `  P ) ) ) )
12218, 121mpd 13 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  ->  w  e.  ( topGen ` 
ran  ( ball `  P
) ) )
123122ex 114 . . . . 5  |-  ( ph  ->  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  ->  w  e.  ( topGen `  ran  ( ball `  P ) ) ) )
124123ssrdv 3148 . . . 4  |-  ( ph  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  C_  ( topGen `  ran  ( ball `  P ) ) )
1254mopntop 13084 . . . . . . . 8  |-  ( M  e.  ( *Met `  X )  ->  J  e.  Top )
1262, 125syl 14 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
1275mopntop 13084 . . . . . . . 8  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  Top )
1283, 127syl 14 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
129 mpoexga 6180 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
130126, 128, 129syl2anc 409 . . . . . 6  |-  ( ph  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
131 rnexg 4869 . . . . . 6  |-  ( ( r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
132130, 131syl 14 . . . . 5  |-  ( ph  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  e. 
_V )
13337, 111, 1143syl 17 . . . . 5  |-  ( ph  ->  ran  ( ball `  P
)  e.  _V )
134 tgss3 12718 . . . . 5  |-  ( ( ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  e. 
_V  /\  ran  ( ball `  P )  e.  _V )  ->  ( ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) 
C_  ( topGen `  ran  ( ball `  P )
)  <->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  C_  ( topGen `  ran  ( ball `  P ) ) ) )
135132, 133, 134syl2anc 409 . . . 4  |-  ( ph  ->  ( ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) ) )  C_  ( topGen `  ran  ( ball `  P ) )  <->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) 
C_  ( topGen `  ran  ( ball `  P )
) ) )
136124, 135mpbird 166 . . 3  |-  ( ph  ->  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  C_  ( topGen ` 
ran  ( ball `  P
) ) )
137 eqid 2165 . . . . 5  |-  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  =  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )
138137txval 12895 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
139126, 128, 138syl2anc 409 . . 3  |-  ( ph  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
1406mopnval 13082 . . . 4  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  L  =  ( topGen `  ran  ( ball `  P )
) )
14137, 140syl 14 . . 3  |-  ( ph  ->  L  =  ( topGen ` 
ran  ( ball `  P
) ) )
142136, 139, 1413sstr4d 3187 . 2  |-  ( ph  ->  ( J  tX  K
)  C_  L )
1437, 142eqssd 3159 1  |-  ( ph  ->  L  =  ( J 
tX  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559   {cpr 3577   U.cuni 3789   class class class wbr 3982    X. cxp 4602   ran crn 4605    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   1stc1st 6106   2ndc2nd 6107   supcsup 6947  infcinf 6948   RR*cxr 7932    < clt 7933    <_ cle 7934   RR+crp 9589   topGenctg 12571   *Metcxmet 12620   ballcbl 12622   MetOpencmopn 12625   Topctop 12635  TopOnctopon 12648    tX ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-tx 12893
This theorem is referenced by:  txmetcnp  13158
  Copyright terms: Public domain W3C validator