ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blss Unicode version

Theorem blss 13222
Description: Any point  P in a ball  B can be centered in another ball that is a subset of  B. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
blss  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Distinct variable groups:    x, B    x, D    x, P    x, X

Proof of Theorem blss
Dummy variables  r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrn 13206 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( B  e.  ran  ( ball `  D )  <->  E. y  e.  X  E. r  e.  RR*  B  =  ( y ( ball `  D
) r ) ) )
2 elbl 13185 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y ( ball `  D
) r )  <->  ( P  e.  X  /\  (
y D P )  <  r ) ) )
3 simpl1 995 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  D  e.  ( *Met `  X
) )
4 simpl2 996 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  y  e.  X )
5 simpr 109 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  P  e.  X )
6 xmetcl 13146 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  P  e.  X
)  ->  ( y D P )  e.  RR* )
73, 4, 5, 6syl3anc 1233 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( y D P )  e.  RR* )
8 simpl3 997 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  r  e.  RR* )
9 qbtwnxr 10214 . . . . . . . . . . 11  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR*  /\  ( y D P )  < 
r )  ->  E. z  e.  QQ  ( ( y D P )  < 
z  /\  z  <  r ) )
1093expia 1200 . . . . . . . . . 10  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR* )  ->  (
( y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  <  z  /\  z  <  r ) ) )
117, 8, 10syl2anc 409 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( (
y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  < 
z  /\  z  <  r ) ) )
12 qre 9584 . . . . . . . . . . 11  |-  ( z  e.  QQ  ->  z  e.  RR )
13 simpll1 1031 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  D  e.  ( *Met `  X ) )
14 simplr 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  P  e.  X )
15 simpll2 1032 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  y  e.  X )
16 xmetsym 13162 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  y  e.  X
)  ->  ( P D y )  =  ( y D P ) )
1713, 14, 15, 16syl3anc 1233 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  =  ( y D P ) )
18 simprrl 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
y D P )  <  z )
1917, 18eqbrtrd 4011 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  < 
z )
20 simprl 526 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR )
21 xmetcl 13146 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  y  e.  X
)  ->  ( P D y )  e. 
RR* )
2213, 14, 15, 21syl3anc 1233 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e. 
RR* )
23 rexr 7965 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  RR  ->  z  e.  RR* )
2423ad2antrl 487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR* )
2522, 24, 19xrltled 9756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_ 
z )
26 xmetlecl 13161 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  y  e.  X )  /\  (
z  e.  RR  /\  ( P D y )  <_  z ) )  ->  ( P D y )  e.  RR )
2713, 14, 15, 20, 25, 26syl122anc 1242 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  RR )
28 difrp 9649 . . . . . . . . . . . . . . 15  |-  ( ( ( P D y )  e.  RR  /\  z  e.  RR )  ->  ( ( P D y )  <  z  <->  ( z  -  ( P D y ) )  e.  RR+ ) )
2927, 20, 28syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
( P D y )  <  z  <->  ( z  -  ( P D y ) )  e.  RR+ ) )
3019, 29mpbid 146 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
z  -  ( P D y ) )  e.  RR+ )
3120, 27resubcld 8300 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
z  -  ( P D y ) )  e.  RR )
3222xrleidd 9758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_ 
( P D y ) )
3320recnd 7948 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  CC )
3427recnd 7948 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  CC )
3533, 34nncand 8235 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
z  -  ( z  -  ( P D y ) ) )  =  ( P D y ) )
3632, 35breqtrrd 4017 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_ 
( z  -  (
z  -  ( P D y ) ) ) )
37 blss2 13201 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  y  e.  X
)  /\  ( (
z  -  ( P D y ) )  e.  RR  /\  z  e.  RR  /\  ( P D y )  <_ 
( z  -  (
z  -  ( P D y ) ) ) ) )  -> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
z ) )
3813, 14, 15, 31, 20, 36, 37syl33anc 1248 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P ( ball `  D
) ( z  -  ( P D y ) ) )  C_  (
y ( ball `  D
) z ) )
39 simpll3 1033 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  r  e.  RR* )
40 simprrr 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <  r )
4124, 39, 40xrltled 9756 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <_  r )
42 ssbl 13220 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X )  /\  (
z  e.  RR*  /\  r  e.  RR* )  /\  z  <_  r )  ->  (
y ( ball `  D
) z )  C_  ( y ( ball `  D ) r ) )
4313, 15, 24, 39, 41, 42syl221anc 1244 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
y ( ball `  D
) z )  C_  ( y ( ball `  D ) r ) )
4438, 43sstrd 3157 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P ( ball `  D
) ( z  -  ( P D y ) ) )  C_  (
y ( ball `  D
) r ) )
45 oveq2 5861 . . . . . . . . . . . . . . 15  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( P
( ball `  D )
x )  =  ( P ( ball `  D
) ( z  -  ( P D y ) ) ) )
4645sseq1d 3176 . . . . . . . . . . . . . 14  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r )  <-> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
r ) ) )
4746rspcev 2834 . . . . . . . . . . . . 13  |-  ( ( ( z  -  ( P D y ) )  e.  RR+  /\  ( P ( ball `  D
) ( z  -  ( P D y ) ) )  C_  (
y ( ball `  D
) r ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) )
4830, 44, 47syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) )
4948expr 373 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  z  e.  RR )  ->  (
( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5012, 49sylan2 284 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  z  e.  QQ )  ->  (
( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5150rexlimdva 2587 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( E. z  e.  QQ  (
( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5211, 51syld 45 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( (
y D P )  <  r  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
5352expimpd 361 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( ( P  e.  X  /\  ( y D P )  < 
r )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
542, 53sylbid 149 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y ( ball `  D
) r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
55 eleq2 2234 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( P  e.  B  <->  P  e.  ( y ( ball `  D ) r ) ) )
56 sseq2 3171 . . . . . . . 8  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P ( ball `  D ) x ) 
C_  B  <->  ( P
( ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
5756rexbidv 2471 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B 
<->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5855, 57imbi12d 233 . . . . . 6  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B )  <->  ( P  e.  ( y ( ball `  D ) r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) ) )
5954, 58syl5ibrcom 156 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( B  =  ( y ( ball `  D
) r )  -> 
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
60593expib 1201 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
( y  e.  X  /\  r  e.  RR* )  ->  ( B  =  ( y ( ball `  D
) r )  -> 
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) ) )
6160rexlimdvv 2594 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( E. y  e.  X  E. r  e.  RR*  B  =  ( y (
ball `  D )
r )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
621, 61sylbid 149 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( B  e.  ran  ( ball `  D )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
63623imp 1188 1  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449    C_ wss 3121   class class class wbr 3989   ran crn 4612   ` cfv 5198  (class class class)co 5853   RRcr 7773   RR*cxr 7953    < clt 7954    <_ cle 7955    - cmin 8090   QQcq 9578   RR+crp 9610   *Metcxmet 12774   ballcbl 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-psmet 12781  df-xmet 12782  df-bl 12784
This theorem is referenced by:  blssex  13224  blin2  13226  metss  13288  metcnp3  13305
  Copyright terms: Public domain W3C validator