ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blss Unicode version

Theorem blss 12586
Description: Any point  P in a ball  B can be centered in another ball that is a subset of  B. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
blss  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Distinct variable groups:    x, B    x, D    x, P    x, X

Proof of Theorem blss
Dummy variables  r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrn 12570 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( B  e.  ran  ( ball `  D )  <->  E. y  e.  X  E. r  e.  RR*  B  =  ( y ( ball `  D
) r ) ) )
2 elbl 12549 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y ( ball `  D
) r )  <->  ( P  e.  X  /\  (
y D P )  <  r ) ) )
3 simpl1 984 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  D  e.  ( *Met `  X
) )
4 simpl2 985 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  y  e.  X )
5 simpr 109 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  P  e.  X )
6 xmetcl 12510 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  P  e.  X
)  ->  ( y D P )  e.  RR* )
73, 4, 5, 6syl3anc 1216 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( y D P )  e.  RR* )
8 simpl3 986 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  r  e.  RR* )
9 qbtwnxr 10028 . . . . . . . . . . 11  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR*  /\  ( y D P )  < 
r )  ->  E. z  e.  QQ  ( ( y D P )  < 
z  /\  z  <  r ) )
1093expia 1183 . . . . . . . . . 10  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR* )  ->  (
( y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  <  z  /\  z  <  r ) ) )
117, 8, 10syl2anc 408 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( (
y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  < 
z  /\  z  <  r ) ) )
12 qre 9410 . . . . . . . . . . 11  |-  ( z  e.  QQ  ->  z  e.  RR )
13 simpll1 1020 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  D  e.  ( *Met `  X ) )
14 simplr 519 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  P  e.  X )
15 simpll2 1021 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  y  e.  X )
16 xmetsym 12526 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  y  e.  X
)  ->  ( P D y )  =  ( y D P ) )
1713, 14, 15, 16syl3anc 1216 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  =  ( y D P ) )
18 simprrl 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
y D P )  <  z )
1917, 18eqbrtrd 3945 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  < 
z )
20 simprl 520 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR )
21 xmetcl 12510 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  y  e.  X
)  ->  ( P D y )  e. 
RR* )
2213, 14, 15, 21syl3anc 1216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e. 
RR* )
23 rexr 7804 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  RR  ->  z  e.  RR* )
2423ad2antrl 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR* )
2522, 24, 19xrltled 9578 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_ 
z )
26 xmetlecl 12525 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  y  e.  X )  /\  (
z  e.  RR  /\  ( P D y )  <_  z ) )  ->  ( P D y )  e.  RR )
2713, 14, 15, 20, 25, 26syl122anc 1225 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  RR )
28 difrp 9473 . . . . . . . . . . . . . . 15  |-  ( ( ( P D y )  e.  RR  /\  z  e.  RR )  ->  ( ( P D y )  <  z  <->  ( z  -  ( P D y ) )  e.  RR+ ) )
2927, 20, 28syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
( P D y )  <  z  <->  ( z  -  ( P D y ) )  e.  RR+ ) )
3019, 29mpbid 146 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
z  -  ( P D y ) )  e.  RR+ )
3120, 27resubcld 8136 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
z  -  ( P D y ) )  e.  RR )
3222xrleidd 9580 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_ 
( P D y ) )
3320recnd 7787 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  CC )
3427recnd 7787 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  CC )
3533, 34nncand 8071 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
z  -  ( z  -  ( P D y ) ) )  =  ( P D y ) )
3632, 35breqtrrd 3951 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_ 
( z  -  (
z  -  ( P D y ) ) ) )
37 blss2 12565 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  y  e.  X
)  /\  ( (
z  -  ( P D y ) )  e.  RR  /\  z  e.  RR  /\  ( P D y )  <_ 
( z  -  (
z  -  ( P D y ) ) ) ) )  -> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
z ) )
3813, 14, 15, 31, 20, 36, 37syl33anc 1231 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P ( ball `  D
) ( z  -  ( P D y ) ) )  C_  (
y ( ball `  D
) z ) )
39 simpll3 1022 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  r  e.  RR* )
40 simprrr 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <  r )
4124, 39, 40xrltled 9578 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <_  r )
42 ssbl 12584 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X )  /\  (
z  e.  RR*  /\  r  e.  RR* )  /\  z  <_  r )  ->  (
y ( ball `  D
) z )  C_  ( y ( ball `  D ) r ) )
4313, 15, 24, 39, 41, 42syl221anc 1227 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  (
y ( ball `  D
) z )  C_  ( y ( ball `  D ) r ) )
4438, 43sstrd 3102 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P ( ball `  D
) ( z  -  ( P D y ) ) )  C_  (
y ( ball `  D
) r ) )
45 oveq2 5775 . . . . . . . . . . . . . . 15  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( P
( ball `  D )
x )  =  ( P ( ball `  D
) ( z  -  ( P D y ) ) ) )
4645sseq1d 3121 . . . . . . . . . . . . . 14  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r )  <-> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
r ) ) )
4746rspcev 2784 . . . . . . . . . . . . 13  |-  ( ( ( z  -  ( P D y ) )  e.  RR+  /\  ( P ( ball `  D
) ( z  -  ( P D y ) ) )  C_  (
y ( ball `  D
) r ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) )
4830, 44, 47syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  (
z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) )
4948expr 372 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  z  e.  RR )  ->  (
( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5012, 49sylan2 284 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  /\  z  e.  QQ )  ->  (
( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5150rexlimdva 2547 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( E. z  e.  QQ  (
( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5211, 51syld 45 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  ->  ( (
y D P )  <  r  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
5352expimpd 360 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( ( P  e.  X  /\  ( y D P )  < 
r )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
542, 53sylbid 149 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y ( ball `  D
) r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
55 eleq2 2201 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( P  e.  B  <->  P  e.  ( y ( ball `  D ) r ) ) )
56 sseq2 3116 . . . . . . . 8  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P ( ball `  D ) x ) 
C_  B  <->  ( P
( ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
5756rexbidv 2436 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B 
<->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5855, 57imbi12d 233 . . . . . 6  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B )  <->  ( P  e.  ( y ( ball `  D ) r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) ) )
5954, 58syl5ibrcom 156 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( B  =  ( y ( ball `  D
) r )  -> 
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
60593expib 1184 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
( y  e.  X  /\  r  e.  RR* )  ->  ( B  =  ( y ( ball `  D
) r )  -> 
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) ) )
6160rexlimdvv 2554 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( E. y  e.  X  E. r  e.  RR*  B  =  ( y (
ball `  D )
r )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
621, 61sylbid 149 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( B  e.  ran  ( ball `  D )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
63623imp 1175 1  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415    C_ wss 3066   class class class wbr 3924   ran crn 4535   ` cfv 5118  (class class class)co 5767   RRcr 7612   RR*cxr 7792    < clt 7793    <_ cle 7794    - cmin 7926   QQcq 9404   RR+crp 9434   *Metcxmet 12138   ballcbl 12140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-xneg 9552  df-xadd 9553  df-psmet 12145  df-xmet 12146  df-bl 12148
This theorem is referenced by:  blssex  12588  blin2  12590  metss  12652  metcnp3  12669
  Copyright terms: Public domain W3C validator