Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2strbasg | Unicode version |
Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
Ref | Expression |
---|---|
2str.g | |
2str.e | Slot |
2str.l | |
2str.n |
Ref | Expression |
---|---|
2strbasg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseslid 12465 | . 2 Slot | |
2 | 2str.g | . . 3 | |
3 | basendxnn 12464 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | simpl 108 | . . . . 5 | |
6 | opexg 4211 | . . . . 5 | |
7 | 4, 5, 6 | syl2anc 409 | . . . 4 |
8 | 2str.e | . . . . . . . 8 Slot | |
9 | 2str.n | . . . . . . . 8 | |
10 | 8, 9 | ndxarg 12432 | . . . . . . 7 |
11 | 10, 9 | eqeltri 2243 | . . . . . 6 |
12 | 11 | a1i 9 | . . . . 5 |
13 | simpr 109 | . . . . 5 | |
14 | opexg 4211 | . . . . 5 | |
15 | 12, 13, 14 | syl2anc 409 | . . . 4 |
16 | prexg 4194 | . . . 4 | |
17 | 7, 15, 16 | syl2anc 409 | . . 3 |
18 | 2, 17 | eqeltrid 2257 | . 2 |
19 | 3 | nnrei 8880 | . . . . . 6 |
20 | 2str.l | . . . . . . 7 | |
21 | basendx 12463 | . . . . . . 7 | |
22 | 20, 21, 10 | 3brtr4i 4017 | . . . . . 6 |
23 | 19, 22 | ltneii 8009 | . . . . 5 |
24 | 23 | a1i 9 | . . . 4 |
25 | funprg 5246 | . . . 4 | |
26 | 4, 12, 5, 13, 24, 25 | syl221anc 1244 | . . 3 |
27 | 2 | funeqi 5217 | . . 3 |
28 | 26, 27 | sylibr 133 | . 2 |
29 | prid1g 3685 | . . . 4 | |
30 | 7, 29 | syl 14 | . . 3 |
31 | 30, 2 | eleqtrrdi 2264 | . 2 |
32 | 1, 18, 28, 31 | strslfvd 12450 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wne 2340 cvv 2730 cpr 3582 cop 3584 class class class wbr 3987 wfun 5190 cfv 5196 c1 7768 clt 7947 cn 8871 cnx 12406 Slot cslot 12408 cbs 12409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1re 7861 ax-addrcl 7864 ax-pre-ltirr 7879 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-iota 5158 df-fun 5198 df-fv 5204 df-pnf 7949 df-mnf 7950 df-ltxr 7952 df-inn 8872 df-ndx 12412 df-slot 12413 df-base 12415 |
This theorem is referenced by: grpbaseg 12519 eltpsg 12797 |
Copyright terms: Public domain | W3C validator |