ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2strbasg Unicode version

Theorem 2strbasg 12642
Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
2str.e  |-  E  = Slot 
N
2str.l  |-  1  <  N
2str.n  |-  N  e.  NN
Assertion
Ref Expression
2strbasg  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  =  ( Base `  G ) )

Proof of Theorem 2strbasg
StepHypRef Expression
1 baseslid 12580 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 2str.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
3 basendxnn 12579 . . . . . 6  |-  ( Base `  ndx )  e.  NN
43a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  e.  NN )
5 simpl 109 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  e.  V )
6 opexg 4249 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
74, 5, 6syl2anc 411 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e. 
_V )
8 2str.e . . . . . . . 8  |-  E  = Slot 
N
9 2str.n . . . . . . . 8  |-  N  e.  NN
108, 9ndxarg 12546 . . . . . . 7  |-  ( E `
 ndx )  =  N
1110, 9eqeltri 2262 . . . . . 6  |-  ( E `
 ndx )  e.  NN
1211a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( E `  ndx )  e.  NN )
13 simpr 110 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  e.  W )
14 opexg 4249 . . . . 5  |-  ( ( ( E `  ndx )  e.  NN  /\  .+  e.  W )  ->  <. ( E `  ndx ) , 
.+  >.  e.  _V )
1512, 13, 14syl2anc 411 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  _V )
16 prexg 4232 . . . 4  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( E `
 ndx ) , 
.+  >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
177, 15, 16syl2anc 411 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
182, 17eqeltrid 2276 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  G  e.  _V )
193nnrei 8963 . . . . . 6  |-  ( Base `  ndx )  e.  RR
20 2str.l . . . . . . 7  |-  1  <  N
21 basendx 12578 . . . . . . 7  |-  ( Base `  ndx )  =  1
2220, 21, 103brtr4i 4051 . . . . . 6  |-  ( Base `  ndx )  <  ( E `  ndx )
2319, 22ltneii 8089 . . . . 5  |-  ( Base `  ndx )  =/=  ( E `  ndx )
2423a1i 9 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  =/=  ( E `  ndx ) )
25 funprg 5288 . . . 4  |-  ( ( ( ( Base `  ndx )  e.  NN  /\  ( E `  ndx )  e.  NN )  /\  ( B  e.  V  /\  .+  e.  W )  /\  ( Base `  ndx )  =/=  ( E `  ndx ) )  ->  Fun  {
<. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
264, 12, 5, 13, 24, 25syl221anc 1260 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
272funeqi 5259 . . 3  |-  ( Fun 
G  <->  Fun  { <. ( Base `  ndx ) ,  B >. ,  <. ( E `  ndx ) , 
.+  >. } )
2826, 27sylibr 134 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  G )
29 prid1g 3714 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
307, 29syl 14 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
3130, 2eleqtrrdi 2283 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e.  G )
321, 18, 28, 31strslfvd 12565 1  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  =  ( Base `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160    =/= wne 2360   _Vcvv 2752   {cpr 3611   <.cop 3613   class class class wbr 4021   Fun wfun 5232   ` cfv 5238   1c1 7847    < clt 8027   NNcn 8954   ndxcnx 12520  Slot cslot 12522   Basecbs 12523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943  ax-pre-ltirr 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-iota 5199  df-fun 5240  df-fv 5246  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-ndx 12526  df-slot 12527  df-base 12529
This theorem is referenced by:  grpbaseg  12649  eltpsg  14025
  Copyright terms: Public domain W3C validator