ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2strbasg Unicode version

Theorem 2strbasg 13067
Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
2str.e  |-  E  = Slot 
N
2str.l  |-  1  <  N
2str.n  |-  N  e.  NN
Assertion
Ref Expression
2strbasg  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  =  ( Base `  G ) )

Proof of Theorem 2strbasg
StepHypRef Expression
1 baseslid 13004 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 2str.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
3 basendxnn 13003 . . . . . 6  |-  ( Base `  ndx )  e.  NN
43a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  e.  NN )
5 simpl 109 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  e.  V )
6 opexg 4290 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
74, 5, 6syl2anc 411 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e. 
_V )
8 2str.e . . . . . . . 8  |-  E  = Slot 
N
9 2str.n . . . . . . . 8  |-  N  e.  NN
108, 9ndxarg 12970 . . . . . . 7  |-  ( E `
 ndx )  =  N
1110, 9eqeltri 2280 . . . . . 6  |-  ( E `
 ndx )  e.  NN
1211a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( E `  ndx )  e.  NN )
13 simpr 110 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  e.  W )
14 opexg 4290 . . . . 5  |-  ( ( ( E `  ndx )  e.  NN  /\  .+  e.  W )  ->  <. ( E `  ndx ) , 
.+  >.  e.  _V )
1512, 13, 14syl2anc 411 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  _V )
16 prexg 4271 . . . 4  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( E `
 ndx ) , 
.+  >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
177, 15, 16syl2anc 411 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
182, 17eqeltrid 2294 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  G  e.  _V )
193nnrei 9080 . . . . . 6  |-  ( Base `  ndx )  e.  RR
20 2str.l . . . . . . 7  |-  1  <  N
21 basendx 13002 . . . . . . 7  |-  ( Base `  ndx )  =  1
2220, 21, 103brtr4i 4089 . . . . . 6  |-  ( Base `  ndx )  <  ( E `  ndx )
2319, 22ltneii 8204 . . . . 5  |-  ( Base `  ndx )  =/=  ( E `  ndx )
2423a1i 9 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  =/=  ( E `  ndx ) )
25 funprg 5343 . . . 4  |-  ( ( ( ( Base `  ndx )  e.  NN  /\  ( E `  ndx )  e.  NN )  /\  ( B  e.  V  /\  .+  e.  W )  /\  ( Base `  ndx )  =/=  ( E `  ndx ) )  ->  Fun  {
<. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
264, 12, 5, 13, 24, 25syl221anc 1261 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
272funeqi 5311 . . 3  |-  ( Fun 
G  <->  Fun  { <. ( Base `  ndx ) ,  B >. ,  <. ( E `  ndx ) , 
.+  >. } )
2826, 27sylibr 134 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  G )
29 prid1g 3747 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
307, 29syl 14 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
3130, 2eleqtrrdi 2301 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e.  G )
321, 18, 28, 31strslfvd 12989 1  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  =  ( Base `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    =/= wne 2378   _Vcvv 2776   {cpr 3644   <.cop 3646   class class class wbr 4059   Fun wfun 5284   ` cfv 5290   1c1 7961    < clt 8142   NNcn 9071   ndxcnx 12944  Slot cslot 12946   Basecbs 12947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-pre-ltirr 8072
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953
This theorem is referenced by:  grpbaseg  13074  eltpsg  14627
  Copyright terms: Public domain W3C validator