| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2strbasg | Unicode version | ||
| Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
| Ref | Expression |
|---|---|
| 2str.g |
|
| 2str.e |
|
| 2str.l |
|
| 2str.n |
|
| Ref | Expression |
|---|---|
| 2strbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 13085 |
. 2
| |
| 2 | 2str.g |
. . 3
| |
| 3 | basendxnn 13083 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | simpl 109 |
. . . . 5
| |
| 6 | opexg 4313 |
. . . . 5
| |
| 7 | 4, 5, 6 | syl2anc 411 |
. . . 4
|
| 8 | 2str.e |
. . . . . . . 8
| |
| 9 | 2str.n |
. . . . . . . 8
| |
| 10 | 8, 9 | ndxarg 13050 |
. . . . . . 7
|
| 11 | 10, 9 | eqeltri 2302 |
. . . . . 6
|
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | simpr 110 |
. . . . 5
| |
| 14 | opexg 4313 |
. . . . 5
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . 4
|
| 16 | prexg 4294 |
. . . 4
| |
| 17 | 7, 15, 16 | syl2anc 411 |
. . 3
|
| 18 | 2, 17 | eqeltrid 2316 |
. 2
|
| 19 | 3 | nnrei 9115 |
. . . . . 6
|
| 20 | 2str.l |
. . . . . . 7
| |
| 21 | basendx 13082 |
. . . . . . 7
| |
| 22 | 20, 21, 10 | 3brtr4i 4112 |
. . . . . 6
|
| 23 | 19, 22 | ltneii 8239 |
. . . . 5
|
| 24 | 23 | a1i 9 |
. . . 4
|
| 25 | funprg 5370 |
. . . 4
| |
| 26 | 4, 12, 5, 13, 24, 25 | syl221anc 1282 |
. . 3
|
| 27 | 2 | funeqi 5338 |
. . 3
|
| 28 | 26, 27 | sylibr 134 |
. 2
|
| 29 | prid1g 3770 |
. . . 4
| |
| 30 | 7, 29 | syl 14 |
. . 3
|
| 31 | 30, 2 | eleqtrrdi 2323 |
. 2
|
| 32 | 1, 18, 28, 31 | strslfvd 13069 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-pre-ltirr 8107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 |
| This theorem is referenced by: grpbaseg 13155 eltpsg 14708 |
| Copyright terms: Public domain | W3C validator |