ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2strbasg Unicode version

Theorem 2strbasg 12432
Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
2str.e  |-  E  = Slot 
N
2str.l  |-  1  <  N
2str.n  |-  N  e.  NN
Assertion
Ref Expression
2strbasg  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  =  ( Base `  G ) )

Proof of Theorem 2strbasg
StepHypRef Expression
1 baseslid 12387 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 2str.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
3 basendxnn 12386 . . . . . 6  |-  ( Base `  ndx )  e.  NN
43a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  e.  NN )
5 simpl 108 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  e.  V )
6 opexg 4200 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
74, 5, 6syl2anc 409 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e. 
_V )
8 2str.e . . . . . . . 8  |-  E  = Slot 
N
9 2str.n . . . . . . . 8  |-  N  e.  NN
108, 9ndxarg 12354 . . . . . . 7  |-  ( E `
 ndx )  =  N
1110, 9eqeltri 2237 . . . . . 6  |-  ( E `
 ndx )  e.  NN
1211a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( E `  ndx )  e.  NN )
13 simpr 109 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  e.  W )
14 opexg 4200 . . . . 5  |-  ( ( ( E `  ndx )  e.  NN  /\  .+  e.  W )  ->  <. ( E `  ndx ) , 
.+  >.  e.  _V )
1512, 13, 14syl2anc 409 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  _V )
16 prexg 4183 . . . 4  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( E `
 ndx ) , 
.+  >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
177, 15, 16syl2anc 409 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
182, 17eqeltrid 2251 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  G  e.  _V )
193nnrei 8857 . . . . . 6  |-  ( Base `  ndx )  e.  RR
20 2str.l . . . . . . 7  |-  1  <  N
21 basendx 12385 . . . . . . 7  |-  ( Base `  ndx )  =  1
2220, 21, 103brtr4i 4006 . . . . . 6  |-  ( Base `  ndx )  <  ( E `  ndx )
2319, 22ltneii 7986 . . . . 5  |-  ( Base `  ndx )  =/=  ( E `  ndx )
2423a1i 9 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  =/=  ( E `  ndx ) )
25 funprg 5232 . . . 4  |-  ( ( ( ( Base `  ndx )  e.  NN  /\  ( E `  ndx )  e.  NN )  /\  ( B  e.  V  /\  .+  e.  W )  /\  ( Base `  ndx )  =/=  ( E `  ndx ) )  ->  Fun  {
<. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
264, 12, 5, 13, 24, 25syl221anc 1238 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
272funeqi 5203 . . 3  |-  ( Fun 
G  <->  Fun  { <. ( Base `  ndx ) ,  B >. ,  <. ( E `  ndx ) , 
.+  >. } )
2826, 27sylibr 133 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  G )
29 prid1g 3674 . . . 4  |-  ( <.
( Base `  ndx ) ,  B >.  e.  _V  -> 
<. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
307, 29syl 14 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e. 
{ <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
3130, 2eleqtrrdi 2258 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e.  G )
321, 18, 28, 31strslfvd 12372 1  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  =  ( Base `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135    =/= wne 2334   _Vcvv 2721   {cpr 3571   <.cop 3573   class class class wbr 3976   Fun wfun 5176   ` cfv 5182   1c1 7745    < clt 7924   NNcn 8848   ndxcnx 12328  Slot cslot 12330   Basecbs 12331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1re 7838  ax-addrcl 7841  ax-pre-ltirr 7856
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-iota 5147  df-fun 5184  df-fv 5190  df-pnf 7926  df-mnf 7927  df-ltxr 7929  df-inn 8849  df-ndx 12334  df-slot 12335  df-base 12337
This theorem is referenced by:  grpbaseg  12439  eltpsg  12579
  Copyright terms: Public domain W3C validator