| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2strbasg | Unicode version | ||
| Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
| Ref | Expression |
|---|---|
| 2str.g |
|
| 2str.e |
|
| 2str.l |
|
| 2str.n |
|
| Ref | Expression |
|---|---|
| 2strbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 12760 |
. 2
| |
| 2 | 2str.g |
. . 3
| |
| 3 | basendxnn 12759 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | simpl 109 |
. . . . 5
| |
| 6 | opexg 4262 |
. . . . 5
| |
| 7 | 4, 5, 6 | syl2anc 411 |
. . . 4
|
| 8 | 2str.e |
. . . . . . . 8
| |
| 9 | 2str.n |
. . . . . . . 8
| |
| 10 | 8, 9 | ndxarg 12726 |
. . . . . . 7
|
| 11 | 10, 9 | eqeltri 2269 |
. . . . . 6
|
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | simpr 110 |
. . . . 5
| |
| 14 | opexg 4262 |
. . . . 5
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . 4
|
| 16 | prexg 4245 |
. . . 4
| |
| 17 | 7, 15, 16 | syl2anc 411 |
. . 3
|
| 18 | 2, 17 | eqeltrid 2283 |
. 2
|
| 19 | 3 | nnrei 9016 |
. . . . . 6
|
| 20 | 2str.l |
. . . . . . 7
| |
| 21 | basendx 12758 |
. . . . . . 7
| |
| 22 | 20, 21, 10 | 3brtr4i 4064 |
. . . . . 6
|
| 23 | 19, 22 | ltneii 8140 |
. . . . 5
|
| 24 | 23 | a1i 9 |
. . . 4
|
| 25 | funprg 5309 |
. . . 4
| |
| 26 | 4, 12, 5, 13, 24, 25 | syl221anc 1260 |
. . 3
|
| 27 | 2 | funeqi 5280 |
. . 3
|
| 28 | 26, 27 | sylibr 134 |
. 2
|
| 29 | prid1g 3727 |
. . . 4
| |
| 30 | 7, 29 | syl 14 |
. . 3
|
| 31 | 30, 2 | eleqtrrdi 2290 |
. 2
|
| 32 | 1, 18, 28, 31 | strslfvd 12745 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-pre-ltirr 8008 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 |
| This theorem is referenced by: grpbaseg 12829 eltpsg 14360 |
| Copyright terms: Public domain | W3C validator |