| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2strbasg | Unicode version | ||
| Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
| Ref | Expression |
|---|---|
| 2str.g |
|
| 2str.e |
|
| 2str.l |
|
| 2str.n |
|
| Ref | Expression |
|---|---|
| 2strbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 12889 |
. 2
| |
| 2 | 2str.g |
. . 3
| |
| 3 | basendxnn 12888 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | simpl 109 |
. . . . 5
| |
| 6 | opexg 4272 |
. . . . 5
| |
| 7 | 4, 5, 6 | syl2anc 411 |
. . . 4
|
| 8 | 2str.e |
. . . . . . . 8
| |
| 9 | 2str.n |
. . . . . . . 8
| |
| 10 | 8, 9 | ndxarg 12855 |
. . . . . . 7
|
| 11 | 10, 9 | eqeltri 2278 |
. . . . . 6
|
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | simpr 110 |
. . . . 5
| |
| 14 | opexg 4272 |
. . . . 5
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . 4
|
| 16 | prexg 4255 |
. . . 4
| |
| 17 | 7, 15, 16 | syl2anc 411 |
. . 3
|
| 18 | 2, 17 | eqeltrid 2292 |
. 2
|
| 19 | 3 | nnrei 9045 |
. . . . . 6
|
| 20 | 2str.l |
. . . . . . 7
| |
| 21 | basendx 12887 |
. . . . . . 7
| |
| 22 | 20, 21, 10 | 3brtr4i 4074 |
. . . . . 6
|
| 23 | 19, 22 | ltneii 8169 |
. . . . 5
|
| 24 | 23 | a1i 9 |
. . . 4
|
| 25 | funprg 5324 |
. . . 4
| |
| 26 | 4, 12, 5, 13, 24, 25 | syl221anc 1261 |
. . 3
|
| 27 | 2 | funeqi 5292 |
. . 3
|
| 28 | 26, 27 | sylibr 134 |
. 2
|
| 29 | prid1g 3737 |
. . . 4
| |
| 30 | 7, 29 | syl 14 |
. . 3
|
| 31 | 30, 2 | eleqtrrdi 2299 |
. 2
|
| 32 | 1, 18, 28, 31 | strslfvd 12874 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-pre-ltirr 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fv 5279 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-ndx 12835 df-slot 12836 df-base 12838 |
| This theorem is referenced by: grpbaseg 12959 eltpsg 14512 |
| Copyright terms: Public domain | W3C validator |