| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2strbasg | Unicode version | ||
| Description: The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
| Ref | Expression |
|---|---|
| 2str.g |
|
| 2str.e |
|
| 2str.l |
|
| 2str.n |
|
| Ref | Expression |
|---|---|
| 2strbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseslid 13004 |
. 2
| |
| 2 | 2str.g |
. . 3
| |
| 3 | basendxnn 13003 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | simpl 109 |
. . . . 5
| |
| 6 | opexg 4290 |
. . . . 5
| |
| 7 | 4, 5, 6 | syl2anc 411 |
. . . 4
|
| 8 | 2str.e |
. . . . . . . 8
| |
| 9 | 2str.n |
. . . . . . . 8
| |
| 10 | 8, 9 | ndxarg 12970 |
. . . . . . 7
|
| 11 | 10, 9 | eqeltri 2280 |
. . . . . 6
|
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | simpr 110 |
. . . . 5
| |
| 14 | opexg 4290 |
. . . . 5
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . 4
|
| 16 | prexg 4271 |
. . . 4
| |
| 17 | 7, 15, 16 | syl2anc 411 |
. . 3
|
| 18 | 2, 17 | eqeltrid 2294 |
. 2
|
| 19 | 3 | nnrei 9080 |
. . . . . 6
|
| 20 | 2str.l |
. . . . . . 7
| |
| 21 | basendx 13002 |
. . . . . . 7
| |
| 22 | 20, 21, 10 | 3brtr4i 4089 |
. . . . . 6
|
| 23 | 19, 22 | ltneii 8204 |
. . . . 5
|
| 24 | 23 | a1i 9 |
. . . 4
|
| 25 | funprg 5343 |
. . . 4
| |
| 26 | 4, 12, 5, 13, 24, 25 | syl221anc 1261 |
. . 3
|
| 27 | 2 | funeqi 5311 |
. . 3
|
| 28 | 26, 27 | sylibr 134 |
. 2
|
| 29 | prid1g 3747 |
. . . 4
| |
| 30 | 7, 29 | syl 14 |
. . 3
|
| 31 | 30, 2 | eleqtrrdi 2301 |
. 2
|
| 32 | 1, 18, 28, 31 | strslfvd 12989 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-pre-ltirr 8072 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fv 5298 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 |
| This theorem is referenced by: grpbaseg 13074 eltpsg 14627 |
| Copyright terms: Public domain | W3C validator |