ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnptoprest Unicode version

Theorem cnptoprest 14475
Description: Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 5-Apr-2023.)
Hypotheses
Ref Expression
cnprest.1  |-  X  = 
U. J
cnprest.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnptoprest  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
) )

Proof of Theorem cnptoprest
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  J  e.  Top )
2 simpl3 1004 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  A  C_  X
)
3 cnprest.1 . . . . . . . . . 10  |-  X  = 
U. J
43ntrss2 14357 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  C_  A )
51, 2, 4syl2anc 411 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( int `  J ) `  A )  C_  A
)
6 simprl 529 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  P  e.  ( ( int `  J
) `  A )
)
75, 6sseldd 3184 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  P  e.  A )
8 fvres 5582 . . . . . . 7  |-  ( P  e.  A  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
97, 8syl 14 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( F  |`  A ) `  P )  =  ( F `  P ) )
109eqcomd 2202 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F `  P )  =  ( ( F  |`  A ) `
 P ) )
1110eleq1d 2265 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( F `  P )  e.  y  <->  ( ( F  |`  A ) `  P
)  e.  y ) )
12 inss1 3383 . . . . . . . . 9  |-  ( x  i^i  A )  C_  x
13 imass2 5045 . . . . . . . . 9  |-  ( ( x  i^i  A ) 
C_  x  ->  ( F " ( x  i^i 
A ) )  C_  ( F " x ) )
14 sstr2 3190 . . . . . . . . 9  |-  ( ( F " ( x  i^i  A ) ) 
C_  ( F "
x )  ->  (
( F " x
)  C_  y  ->  ( F " ( x  i^i  A ) ) 
C_  y ) )
1512, 13, 14mp2b 8 . . . . . . . 8  |-  ( ( F " x ) 
C_  y  ->  ( F " ( x  i^i 
A ) )  C_  y )
1615anim2i 342 . . . . . . 7  |-  ( ( P  e.  x  /\  ( F " x ) 
C_  y )  -> 
( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)
1716reximi 2594 . . . . . 6  |-  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)
183ntropn 14353 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  e.  J )
191, 2, 18syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( int `  J ) `  A )  e.  J
)
20 inopn 14239 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  x  e.  J  /\  ( ( int `  J
) `  A )  e.  J )  ->  (
x  i^i  ( ( int `  J ) `  A ) )  e.  J )
21203com23 1211 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J  /\  x  e.  J )  ->  (
x  i^i  ( ( int `  J ) `  A ) )  e.  J )
22213expia 1207 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J )  ->  (
x  e.  J  -> 
( x  i^i  (
( int `  J
) `  A )
)  e.  J ) )
231, 19, 22syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( x  e.  J  ->  ( x  i^i  ( ( int `  J ) `  A
) )  e.  J
) )
24 elin 3346 . . . . . . . . . . . . . 14  |-  ( P  e.  ( x  i^i  ( ( int `  J
) `  A )
)  <->  ( P  e.  x  /\  P  e.  ( ( int `  J
) `  A )
) )
2524simplbi2com 1455 . . . . . . . . . . . . 13  |-  ( P  e.  ( ( int `  J ) `  A
)  ->  ( P  e.  x  ->  P  e.  ( x  i^i  (
( int `  J
) `  A )
) ) )
266, 25syl 14 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( P  e.  x  ->  P  e.  ( x  i^i  (
( int `  J
) `  A )
) ) )
27 sslin 3389 . . . . . . . . . . . . . 14  |-  ( ( ( int `  J
) `  A )  C_  A  ->  ( x  i^i  ( ( int `  J
) `  A )
)  C_  ( x  i^i  A ) )
28 imass2 5045 . . . . . . . . . . . . . 14  |-  ( ( x  i^i  ( ( int `  J ) `
 A ) ) 
C_  ( x  i^i 
A )  ->  ( F " ( x  i^i  ( ( int `  J
) `  A )
) )  C_  ( F " ( x  i^i 
A ) ) )
295, 27, 283syl 17 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F " ( x  i^i  (
( int `  J
) `  A )
) )  C_  ( F " ( x  i^i 
A ) ) )
30 sstr2 3190 . . . . . . . . . . . . 13  |-  ( ( F " ( x  i^i  ( ( int `  J ) `  A
) ) )  C_  ( F " ( x  i^i  A ) )  ->  ( ( F
" ( x  i^i 
A ) )  C_  y  ->  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) )
3129, 30syl 14 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( F " ( x  i^i 
A ) )  C_  y  ->  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) )
3226, 31anim12d 335 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y )  -> 
( P  e.  ( x  i^i  ( ( int `  J ) `
 A ) )  /\  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) ) )
3323, 32anim12d 335 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( (
x  e.  J  /\  ( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)  ->  ( (
x  i^i  ( ( int `  J ) `  A ) )  e.  J  /\  ( P  e.  ( x  i^i  ( ( int `  J
) `  A )
)  /\  ( F " ( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) ) ) )
34 eleq2 2260 . . . . . . . . . . . 12  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( P  e.  z  <->  P  e.  (
x  i^i  ( ( int `  J ) `  A ) ) ) )
35 imaeq2 5005 . . . . . . . . . . . . 13  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( F " z )  =  ( F " ( x  i^i  ( ( int `  J ) `  A
) ) ) )
3635sseq1d 3212 . . . . . . . . . . . 12  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( ( F " z )  C_  y 
<->  ( F " (
x  i^i  ( ( int `  J ) `  A ) ) ) 
C_  y ) )
3734, 36anbi12d 473 . . . . . . . . . . 11  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( ( P  e.  z  /\  ( F " z ) 
C_  y )  <->  ( P  e.  ( x  i^i  (
( int `  J
) `  A )
)  /\  ( F " ( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) ) )
3837rspcev 2868 . . . . . . . . . 10  |-  ( ( ( x  i^i  (
( int `  J
) `  A )
)  e.  J  /\  ( P  e.  (
x  i^i  ( ( int `  J ) `  A ) )  /\  ( F " ( x  i^i  ( ( int `  J ) `  A
) ) )  C_  y ) )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
)
3933, 38syl6 33 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( (
x  e.  J  /\  ( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) )
4039expdimp 259 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  x  e.  J )  ->  (
( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) )
4140rexlimdva 2614 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) )
42 eleq2 2260 . . . . . . . . 9  |-  ( z  =  x  ->  ( P  e.  z  <->  P  e.  x ) )
43 imaeq2 5005 . . . . . . . . . 10  |-  ( z  =  x  ->  ( F " z )  =  ( F " x
) )
4443sseq1d 3212 . . . . . . . . 9  |-  ( z  =  x  ->  (
( F " z
)  C_  y  <->  ( F " x )  C_  y
) )
4542, 44anbi12d 473 . . . . . . . 8  |-  ( z  =  x  ->  (
( P  e.  z  /\  ( F "
z )  C_  y
)  <->  ( P  e.  x  /\  ( F
" x )  C_  y ) ) )
4645cbvrexv 2730 . . . . . . 7  |-  ( E. z  e.  J  ( P  e.  z  /\  ( F " z ) 
C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )
4741, 46imbitrdi 161 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
4817, 47impbid2 143 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
49 vex 2766 . . . . . . . 8  |-  x  e. 
_V
5049inex1 4167 . . . . . . 7  |-  ( x  i^i  A )  e. 
_V
5150a1i 9 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  x  e.  J )  ->  (
x  i^i  A )  e.  _V )
52 uniexg 4474 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. J  e.  _V )
531, 52syl 14 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  U. J  e. 
_V )
542, 3sseqtrdi 3231 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  A  C_  U. J
)
5553, 54ssexd 4173 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  A  e.  _V )
56 elrest 12917 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
571, 55, 56syl2anc 411 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
58 eleq2 2260 . . . . . . . 8  |-  ( z  =  ( x  i^i 
A )  ->  ( P  e.  z  <->  P  e.  ( x  i^i  A ) ) )
59 elin 3346 . . . . . . . . . 10  |-  ( P  e.  ( x  i^i 
A )  <->  ( P  e.  x  /\  P  e.  A ) )
6059rbaib 922 . . . . . . . . 9  |-  ( P  e.  A  ->  ( P  e.  ( x  i^i  A )  <->  P  e.  x ) )
617, 60syl 14 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( P  e.  ( x  i^i  A
)  <->  P  e.  x
) )
6258, 61sylan9bbr 463 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  ( P  e.  z  <->  P  e.  x ) )
63 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  z  =  ( x  i^i 
A ) )
6463imaeq2d 5009 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  (
( F  |`  A )
" z )  =  ( ( F  |`  A ) " (
x  i^i  A )
) )
65 inss2 3384 . . . . . . . . . 10  |-  ( x  i^i  A )  C_  A
66 resima2 4980 . . . . . . . . . 10  |-  ( ( x  i^i  A ) 
C_  A  ->  (
( F  |`  A )
" ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
) )
6765, 66ax-mp 5 . . . . . . . . 9  |-  ( ( F  |`  A ) " ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
)
6864, 67eqtrdi 2245 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  (
( F  |`  A )
" z )  =  ( F " (
x  i^i  A )
) )
6968sseq1d 3212 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  (
( ( F  |`  A ) " z
)  C_  y  <->  ( F " ( x  i^i  A
) )  C_  y
) )
7062, 69anbi12d 473 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  (
( P  e.  z  /\  ( ( F  |`  A ) " z
)  C_  y )  <->  ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y ) ) )
7151, 57, 70rexxfr2d 4500 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. z  e.  ( Jt  A
) ( P  e.  z  /\  ( ( F  |`  A ) " z )  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
7248, 71bitr4d 191 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  <->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
7311, 72imbi12d 234 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  ( ( ( F  |`  A ) `  P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
7473ralbidv 2497 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  A. y  e.  K  ( ( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
753toptopon 14254 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
761, 75sylib 122 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  J  e.  (TopOn `  X ) )
77 simpl2 1003 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  K  e.  Top )
78 cnprest.2 . . . . . 6  |-  Y  = 
U. K
7978toptopon 14254 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
8077, 79sylib 122 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  K  e.  (TopOn `  Y ) )
812, 7sseldd 3184 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  P  e.  X )
82 iscnp 14435 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
8376, 80, 81, 82syl3anc 1249 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
84 simprr 531 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  F : X
--> Y )
8584biantrurd 305 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
8683, 85bitr4d 191 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
87 simp1l 1023 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  J  e.  Top )
8887, 75sylib 122 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  J  e.  (TopOn `  X ) )
89 simp1r 1024 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  A  C_  X
)
90 resttopon 14407 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
9188, 89, 90syl2anc 411 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( Jt  A )  e.  (TopOn `  A
) )
92 simp3 1001 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  K  e.  Top )
9392, 79sylib 122 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  K  e.  (TopOn `  Y ) )
9443ad2ant1 1020 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( int `  J ) `  A
)  C_  A )
95 simp2l 1025 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  P  e.  ( ( int `  J
) `  A )
)
9694, 95sseldd 3184 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  P  e.  A
)
97 iscnp 14435 . . . . 5  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  Y )  /\  P  e.  A
)  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  <->  ( ( F  |`  A ) : A --> Y  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
9891, 93, 96, 97syl3anc 1249 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  ( ( F  |`  A ) : A --> Y  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
99 simp2r 1026 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  F : X --> Y )
10099, 89fssresd 5434 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( F  |`  A ) : A --> Y )
101100biantrurd 305 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( A. y  e.  K  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) )  <->  ( ( F  |`  A ) : A --> Y  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
10298, 101bitr4d 191 . . 3  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  A. y  e.  K  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
1031, 2, 6, 84, 77, 102syl221anc 1260 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  <->  A. y  e.  K  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
10474, 86, 1033bitr4d 220 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763    i^i cin 3156    C_ wss 3157   U.cuni 3839    |` cres 4665   "cima 4666   -->wf 5254   ` cfv 5258  (class class class)co 5922   ↾t crest 12910   Topctop 14233  TopOnctopon 14246   intcnt 14329    CnP ccnp 14422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-rest 12912  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cnp 14425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator