Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrbdtri | Unicode version |
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.) |
Ref | Expression |
---|---|
xrbdtri | inf inf inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 | |
2 | simp1r 1012 | . . . . . . 7 | |
3 | 2 | ad3antrrr 484 | . . . . . 6 |
4 | simplr 520 | . . . . . 6 | |
5 | simp2r 1014 | . . . . . . 7 | |
6 | 5 | ad3antrrr 484 | . . . . . 6 |
7 | simpllr 524 | . . . . . . 7 | |
8 | simp3r 1016 | . . . . . . . 8 | |
9 | 8 | ad3antrrr 484 | . . . . . . 7 |
10 | 7, 9 | elrpd 9629 | . . . . . 6 |
11 | bdtri 11181 | . . . . . 6 inf inf inf | |
12 | 1, 3, 4, 6, 10, 11 | syl221anc 1239 | . . . . 5 inf inf inf |
13 | 1, 4 | rexaddd 9790 | . . . . . . . 8 |
14 | 13 | preq1d 3659 | . . . . . . 7 |
15 | 14 | infeq1d 6977 | . . . . . 6 inf inf |
16 | 1, 4 | readdcld 7928 | . . . . . . 7 |
17 | xrminrecl 11214 | . . . . . . 7 inf inf | |
18 | 16, 7, 17 | syl2anc 409 | . . . . . 6 inf inf |
19 | 15, 18 | eqtrd 2198 | . . . . 5 inf inf |
20 | xrminrecl 11214 | . . . . . . . 8 inf inf | |
21 | 1, 7, 20 | syl2anc 409 | . . . . . . 7 inf inf |
22 | xrminrecl 11214 | . . . . . . . 8 inf inf | |
23 | 4, 7, 22 | syl2anc 409 | . . . . . . 7 inf inf |
24 | 21, 23 | oveq12d 5860 | . . . . . 6 inf inf inf inf |
25 | mincl 11172 | . . . . . . . 8 inf | |
26 | 1, 7, 25 | syl2anc 409 | . . . . . . 7 inf |
27 | mincl 11172 | . . . . . . . 8 inf | |
28 | 4, 7, 27 | syl2anc 409 | . . . . . . 7 inf |
29 | 26, 28 | rexaddd 9790 | . . . . . 6 inf inf inf inf |
30 | 24, 29 | eqtrd 2198 | . . . . 5 inf inf inf inf |
31 | 12, 19, 30 | 3brtr4d 4014 | . . . 4 inf inf inf |
32 | simp3l 1015 | . . . . . . . 8 | |
33 | 32 | xaddid1d 9800 | . . . . . . 7 |
34 | 32 | xrleidd 9737 | . . . . . . . 8 |
35 | 0xr 7945 | . . . . . . . . . . 11 | |
36 | 35 | a1i 9 | . . . . . . . . . 10 |
37 | 36, 32, 8 | xrltled 9735 | . . . . . . . . 9 |
38 | simp2l 1013 | . . . . . . . . . 10 | |
39 | xrlemininf 11212 | . . . . . . . . . 10 inf | |
40 | 36, 38, 32, 39 | syl3anc 1228 | . . . . . . . . 9 inf |
41 | 5, 37, 40 | mpbir2and 934 | . . . . . . . 8 inf |
42 | xrmincl 11207 | . . . . . . . . . 10 inf | |
43 | 38, 32, 42 | syl2anc 409 | . . . . . . . . 9 inf |
44 | xle2add 9815 | . . . . . . . . 9 inf inf inf | |
45 | 32, 36, 32, 43, 44 | syl22anc 1229 | . . . . . . . 8 inf inf |
46 | 34, 41, 45 | mp2and 430 | . . . . . . 7 inf |
47 | 33, 46 | eqbrtrrd 4006 | . . . . . 6 inf |
48 | 47 | ad3antrrr 484 | . . . . 5 inf |
49 | simp1l 1011 | . . . . . . . 8 | |
50 | 49, 38 | xaddcld 9820 | . . . . . . 7 |
51 | 50 | ad3antrrr 484 | . . . . . 6 |
52 | 32 | ad3antrrr 484 | . . . . . 6 |
53 | pnfge 9725 | . . . . . . . 8 | |
54 | 52, 53 | syl 14 | . . . . . . 7 |
55 | simpr 109 | . . . . . . . . 9 | |
56 | 55 | oveq1d 5857 | . . . . . . . 8 |
57 | simpl2l 1040 | . . . . . . . . . 10 | |
58 | 57 | ad2antrr 480 | . . . . . . . . 9 |
59 | simplr 520 | . . . . . . . . . 10 | |
60 | 59 | renemnfd 7950 | . . . . . . . . 9 |
61 | xaddpnf2 9783 | . . . . . . . . 9 | |
62 | 58, 60, 61 | syl2anc 409 | . . . . . . . 8 |
63 | 56, 62 | eqtrd 2198 | . . . . . . 7 |
64 | 54, 63 | breqtrrd 4010 | . . . . . 6 |
65 | xrmineqinf 11210 | . . . . . 6 inf | |
66 | 51, 52, 64, 65 | syl3anc 1228 | . . . . 5 inf |
67 | 49 | ad3antrrr 484 | . . . . . . 7 |
68 | 54, 55 | breqtrrd 4010 | . . . . . . 7 |
69 | xrmineqinf 11210 | . . . . . . 7 inf | |
70 | 67, 52, 68, 69 | syl3anc 1228 | . . . . . 6 inf |
71 | 70 | oveq1d 5857 | . . . . 5 inf inf inf |
72 | 48, 66, 71 | 3brtr4d 4014 | . . . 4 inf inf inf |
73 | simpr 109 | . . . . 5 | |
74 | ge0nemnf 9760 | . . . . . . 7 | |
75 | 49, 2, 74 | syl2anc 409 | . . . . . 6 |
76 | 75 | ad3antrrr 484 | . . . . 5 |
77 | 73, 76 | pm2.21ddne 2419 | . . . 4 inf inf inf |
78 | elxr 9712 | . . . . . 6 | |
79 | 49, 78 | sylib 121 | . . . . 5 |
80 | 79 | ad2antrr 480 | . . . 4 |
81 | 31, 72, 77, 80 | mpjao3dan 1297 | . . 3 inf inf inf |
82 | xrlemininf 11212 | . . . . . . . 8 inf | |
83 | 36, 49, 32, 82 | syl3anc 1228 | . . . . . . 7 inf |
84 | 2, 37, 83 | mpbir2and 934 | . . . . . 6 inf |
85 | xrmincl 11207 | . . . . . . . 8 inf | |
86 | 49, 32, 85 | syl2anc 409 | . . . . . . 7 inf |
87 | xle2add 9815 | . . . . . . 7 inf inf inf | |
88 | 36, 32, 86, 32, 87 | syl22anc 1229 | . . . . . 6 inf inf |
89 | 84, 34, 88 | mp2and 430 | . . . . 5 inf |
90 | 89 | ad2antrr 480 | . . . 4 inf |
91 | 50 | ad2antrr 480 | . . . . . 6 |
92 | 32 | ad2antrr 480 | . . . . . 6 |
93 | 92, 53 | syl 14 | . . . . . . 7 |
94 | simpr 109 | . . . . . . . . 9 | |
95 | 94 | oveq2d 5858 | . . . . . . . 8 |
96 | xaddpnf1 9782 | . . . . . . . . . 10 | |
97 | 49, 75, 96 | syl2anc 409 | . . . . . . . . 9 |
98 | 97 | ad2antrr 480 | . . . . . . . 8 |
99 | 95, 98 | eqtrd 2198 | . . . . . . 7 |
100 | 93, 99 | breqtrrd 4010 | . . . . . 6 |
101 | 91, 92, 100, 65 | syl3anc 1228 | . . . . 5 inf |
102 | xaddid2 9799 | . . . . . 6 | |
103 | 92, 102 | syl 14 | . . . . 5 |
104 | 101, 103 | eqtr4d 2201 | . . . 4 inf |
105 | 57 | adantr 274 | . . . . . 6 |
106 | 93, 94 | breqtrrd 4010 | . . . . . 6 |
107 | xrmineqinf 11210 | . . . . . 6 inf | |
108 | 105, 92, 106, 107 | syl3anc 1228 | . . . . 5 inf |
109 | 108 | oveq2d 5858 | . . . 4 inf inf inf |
110 | 90, 104, 109 | 3brtr4d 4014 | . . 3 inf inf inf |
111 | simpr 109 | . . . 4 | |
112 | 57 | adantr 274 | . . . . 5 |
113 | 5 | ad2antrr 480 | . . . . 5 |
114 | ge0nemnf 9760 | . . . . 5 | |
115 | 112, 113, 114 | syl2anc 409 | . . . 4 |
116 | 111, 115 | pm2.21ddne 2419 | . . 3 inf inf inf |
117 | elxr 9712 | . . . 4 | |
118 | 57, 117 | sylib 121 | . . 3 |
119 | 81, 110, 116, 118 | mpjao3dan 1297 | . 2 inf inf inf |
120 | 50 | adantr 274 | . . . 4 |
121 | 120 | xrleidd 9737 | . . 3 |
122 | prcom 3652 | . . . . 5 | |
123 | 122 | infeq1i 6978 | . . . 4 inf inf |
124 | 32 | adantr 274 | . . . . 5 |
125 | pnfge 9725 | . . . . . . 7 | |
126 | 120, 125 | syl 14 | . . . . . 6 |
127 | simpr 109 | . . . . . 6 | |
128 | 126, 127 | breqtrrd 4010 | . . . . 5 |
129 | xrmineqinf 11210 | . . . . 5 inf | |
130 | 124, 120, 128, 129 | syl3anc 1228 | . . . 4 inf |
131 | 123, 130 | eqtr3id 2213 | . . 3 inf |
132 | prcom 3652 | . . . . . 6 | |
133 | 132 | infeq1i 6978 | . . . . 5 inf inf |
134 | 49 | adantr 274 | . . . . . 6 |
135 | pnfge 9725 | . . . . . . . 8 | |
136 | 134, 135 | syl 14 | . . . . . . 7 |
137 | 136, 127 | breqtrrd 4010 | . . . . . 6 |
138 | xrmineqinf 11210 | . . . . . 6 inf | |
139 | 124, 134, 137, 138 | syl3anc 1228 | . . . . 5 inf |
140 | 133, 139 | eqtr3id 2213 | . . . 4 inf |
141 | prcom 3652 | . . . . . 6 | |
142 | 141 | infeq1i 6978 | . . . . 5 inf inf |
143 | 38 | adantr 274 | . . . . . 6 |
144 | pnfge 9725 | . . . . . . . 8 | |
145 | 143, 144 | syl 14 | . . . . . . 7 |
146 | 145, 127 | breqtrrd 4010 | . . . . . 6 |
147 | xrmineqinf 11210 | . . . . . 6 inf | |
148 | 124, 143, 146, 147 | syl3anc 1228 | . . . . 5 inf |
149 | 142, 148 | eqtr3id 2213 | . . . 4 inf |
150 | 140, 149 | oveq12d 5860 | . . 3 inf inf |
151 | 121, 131, 150 | 3brtr4d 4014 | . 2 inf inf inf |
152 | simpl3r 1043 | . . 3 | |
153 | nltmnf 9724 | . . . . . 6 | |
154 | 35, 153 | ax-mp 5 | . . . . 5 |
155 | breq2 3986 | . . . . 5 | |
156 | 154, 155 | mtbiri 665 | . . . 4 |
157 | 156 | adantl 275 | . . 3 |
158 | 152, 157 | pm2.21dd 610 | . 2 inf inf inf |
159 | elxr 9712 | . . 3 | |
160 | 32, 159 | sylib 121 | . 2 |
161 | 119, 151, 158, 160 | mpjao3dan 1297 | 1 inf inf inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 967 w3a 968 wceq 1343 wcel 2136 wne 2336 cpr 3577 class class class wbr 3982 (class class class)co 5842 infcinf 6948 cr 7752 cc0 7753 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 cle 7934 crp 9589 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-xneg 9708 df-xadd 9709 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 |
This theorem is referenced by: bdxmet 13141 |
Copyright terms: Public domain | W3C validator |