ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrbdtri Unicode version

Theorem xrbdtri 11057
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
xrbdtri  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( {
( A +e
B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )

Proof of Theorem xrbdtri
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  RR )
2 simp1r 1006 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  A )
32ad3antrrr 483 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <_  A
)
4 simplr 519 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  RR )
5 simp2r 1008 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  B )
65ad3antrrr 483 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <_  B
)
7 simpllr 523 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  C  e.  RR )
8 simp3r 1010 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <  C )
98ad3antrrr 483 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <  C
)
107, 9elrpd 9493 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  C  e.  RR+ )
11 bdtri 11023 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
121, 3, 4, 6, 10, 11syl221anc 1227 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_ 
(inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
131, 4rexaddd 9649 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A +e B )  =  ( A  +  B
) )
1413preq1d 3606 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  { ( A +e B ) ,  C }  =  { ( A  +  B ) ,  C } )
1514infeq1d 6899 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  ) )
161, 4readdcld 7807 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  +  B )  e.  RR )
17 xrminrecl 11054 . . . . . . 7  |-  ( ( ( A  +  B
)  e.  RR  /\  C  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
1816, 7, 17syl2anc 408 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
1915, 18eqtrd 2172 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
20 xrminrecl 11054 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR ,  <  ) )
211, 7, 20syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { A ,  C } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR ,  <  )
)
22 xrminrecl 11054 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR ,  <  ) )
234, 7, 22syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { B ,  C } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR ,  <  )
)
2421, 23oveq12d 5792 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  ) +einf ( { B ,  C } ,  RR ,  <  ) ) )
25 mincl 11014 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  e.  RR )
261, 7, 25syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  e.  RR )
27 mincl 11014 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  e.  RR )
284, 7, 27syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  e.  RR )
2926, 28rexaddd 9649 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR ,  <  ) +einf ( { B ,  C } ,  RR ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
3024, 29eqtrd 2172 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
3112, 19, 303brtr4d 3960 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
32 simp3l 1009 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  e.  RR* )
3332xaddid1d 9659 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C +e 0 )  =  C )
3432xrleidd 9599 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  <_  C )
35 0xr 7824 . . . . . . . . . . 11  |-  0  e.  RR*
3635a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  e.  RR* )
3736, 32, 8xrltled 9597 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  C )
38 simp2l 1007 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  B  e.  RR* )
39 xrlemininf 11052 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
0  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( 0  <_  B  /\  0  <_  C ) ) )
4036, 38, 32, 39syl3anc 1216 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( 0  <_  B  /\  0  <_  C ) ) )
415, 37, 40mpbir2and 928 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_ inf ( { B ,  C } ,  RR* ,  <  ) )
42 xrmincl 11047 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
4338, 32, 42syl2anc 408 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
44 xle2add 9674 . . . . . . . . 9  |-  ( ( ( C  e.  RR*  /\  0  e.  RR* )  /\  ( C  e.  RR*  /\ inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* ) )  -> 
( ( C  <_  C  /\  0  <_ inf ( { B ,  C } ,  RR* ,  <  )
)  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) ) )
4532, 36, 32, 43, 44syl22anc 1217 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( ( C  <_  C  /\  0  <_ inf ( { B ,  C } ,  RR* ,  <  ) )  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) ) )
4634, 41, 45mp2and 429 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
4733, 46eqbrtrrd 3952 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
4847ad3antrrr 483 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  )
) )
49 simp1l 1005 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  A  e.  RR* )
5049, 38xaddcld 9679 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A +e B )  e.  RR* )
5150ad3antrrr 483 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  e. 
RR* )
5232ad3antrrr 483 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  e.  RR* )
53 pnfge 9587 . . . . . . . 8  |-  ( C  e.  RR*  ->  C  <_ +oo )
5452, 53syl 14 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_ +oo )
55 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
5655oveq1d 5789 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  =  ( +oo +e
B ) )
57 simpl2l 1034 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  ->  B  e.  RR* )
5857ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
59 simplr 519 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR )
6059renemnfd 7829 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  =/= -oo )
61 xaddpnf2 9642 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
6258, 60, 61syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo +e B )  = +oo )
6356, 62eqtrd 2172 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  = +oo )
6454, 63breqtrrd 3956 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  ( A +e B ) )
65 xrmineqinf 11050 . . . . . 6  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR*  /\  C  <_  ( A +e
B ) )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
6651, 52, 64, 65syl3anc 1216 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
6749ad3antrrr 483 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  e.  RR* )
6854, 55breqtrrd 3956 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  A
)
69 xrmineqinf 11050 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  C  <_  A )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  C )
7067, 52, 68, 69syl3anc 1216 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  C )
7170oveq1d 5789 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
7248, 66, 713brtr4d 3960 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
73 simpr 109 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
74 ge0nemnf 9619 . . . . . . 7  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )
7549, 2, 74syl2anc 408 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  A  =/= -oo )
7675ad3antrrr 483 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  =/= -oo )
7773, 76pm2.21ddne 2391 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
78 elxr 9575 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7949, 78sylib 121 . . . . 5  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
8079ad2antrr 479 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
8131, 72, 77, 80mpjao3dan 1285 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
82 xrlemininf 11052 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  C  e. 
RR* )  ->  (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  <->  ( 0  <_  A  /\  0  <_  C ) ) )
8336, 49, 32, 82syl3anc 1216 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0  <_ inf ( { A ,  C } ,  RR* ,  <  )  <->  ( 0  <_  A  /\  0  <_  C ) ) )
842, 37, 83mpbir2and 928 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_ inf ( { A ,  C } ,  RR* ,  <  ) )
85 xrmincl 11047 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  -> inf ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
8649, 32, 85syl2anc 408 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
87 xle2add 9674 . . . . . . 7  |-  ( ( ( 0  e.  RR*  /\  C  e.  RR* )  /\  (inf ( { A ,  C } ,  RR* ,  <  )  e.  RR*  /\  C  e.  RR* )
)  ->  ( (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  /\  C  <_  C )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) ) )
8836, 32, 86, 32, 87syl22anc 1217 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  /\  C  <_  C )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) ) )
8984, 34, 88mp2and 429 . . . . 5  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0 +e C )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +e C ) )
9089ad2antrr 479 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) )
9150ad2antrr 479 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  e. 
RR* )
9232ad2antrr 479 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  e.  RR* )
9392, 53syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_ +oo )
94 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  B  = +oo )
9594oveq2d 5790 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  =  ( A +e +oo ) )
96 xaddpnf1 9641 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
9749, 75, 96syl2anc 408 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A +e +oo )  = +oo )
9897ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e +oo )  = +oo )
9995, 98eqtrd 2172 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  = +oo )
10093, 99breqtrrd 3956 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_  ( A +e B ) )
10191, 92, 100, 65syl3anc 1216 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
102 xaddid2 9658 . . . . . 6  |-  ( C  e.  RR*  ->  ( 0 +e C )  =  C )
10392, 102syl 14 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( 0 +e C )  =  C )
104101, 103eqtr4d 2175 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  ( 0 +e C ) )
10557adantr 274 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  B  e.  RR* )
10693, 94breqtrrd 3956 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_  B
)
107 xrmineqinf 11050 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  C  <_  B )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  C )
108105, 92, 106, 107syl3anc 1216 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  C )
109108oveq2d 5790 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) )
11090, 104, 1093brtr4d 3960 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
111 simpr 109 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  = -oo )
11257adantr 274 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  e.  RR* )
1135ad2antrr 479 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  0  <_  B
)
114 ge0nemnf 9619 . . . . 5  |-  ( ( B  e.  RR*  /\  0  <_  B )  ->  B  =/= -oo )
115112, 113, 114syl2anc 408 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  =/= -oo )
116111, 115pm2.21ddne 2391 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
117 elxr 9575 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
11857, 117sylib 121 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
11981, 110, 116, 118mpjao3dan 1285 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
12050adantr 274 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  e.  RR* )
121120xrleidd 9599 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_  ( A +e B ) )
122 prcom 3599 . . . . 5  |-  { C ,  ( A +e B ) }  =  { ( A +e B ) ,  C }
123122infeq1i 6900 . . . 4  |- inf ( { C ,  ( A +e B ) } ,  RR* ,  <  )  = inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )
12432adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  C  e.  RR* )
125 pnfge 9587 . . . . . . 7  |-  ( ( A +e B )  e.  RR*  ->  ( A +e B )  <_ +oo )
126120, 125syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_ +oo )
127 simpr 109 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  C  = +oo )
128126, 127breqtrrd 3956 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_  C
)
129 xrmineqinf 11050 . . . . 5  |-  ( ( C  e.  RR*  /\  ( A +e B )  e.  RR*  /\  ( A +e B )  <_  C )  -> inf ( { C ,  ( A +e B ) } ,  RR* ,  <  )  =  ( A +e B ) )
130124, 120, 128, 129syl3anc 1216 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C , 
( A +e
B ) } ,  RR* ,  <  )  =  ( A +e
B ) )
131123, 130syl5eqr 2186 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  ( A +e
B ) )
132 prcom 3599 . . . . . 6  |-  { C ,  A }  =  { A ,  C }
133132infeq1i 6900 . . . . 5  |- inf ( { C ,  A } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR* ,  <  )
13449adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  e.  RR* )
135 pnfge 9587 . . . . . . . 8  |-  ( A  e.  RR*  ->  A  <_ +oo )
136134, 135syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  <_ +oo )
137136, 127breqtrrd 3956 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  <_  C )
138 xrmineqinf 11050 . . . . . 6  |-  ( ( C  e.  RR*  /\  A  e.  RR*  /\  A  <_  C )  -> inf ( { C ,  A } ,  RR* ,  <  )  =  A )
139124, 134, 137, 138syl3anc 1216 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C ,  A } ,  RR* ,  <  )  =  A )
140133, 139syl5eqr 2186 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  A )
141 prcom 3599 . . . . . 6  |-  { C ,  B }  =  { B ,  C }
142141infeq1i 6900 . . . . 5  |- inf ( { C ,  B } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR* ,  <  )
14338adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  e.  RR* )
144 pnfge 9587 . . . . . . . 8  |-  ( B  e.  RR*  ->  B  <_ +oo )
145143, 144syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  <_ +oo )
146145, 127breqtrrd 3956 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  <_  C )
147 xrmineqinf 11050 . . . . . 6  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  B  <_  C )  -> inf ( { C ,  B } ,  RR* ,  <  )  =  B )
148124, 143, 146, 147syl3anc 1216 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C ,  B } ,  RR* ,  <  )  =  B )
149142, 148syl5eqr 2186 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  B )
150140, 149oveq12d 5792 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  ( A +e B ) )
151121, 131, 1503brtr4d 3960 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
152 simpl3r 1037 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  ->  0  <  C )
153 nltmnf 9586 . . . . . 6  |-  ( 0  e.  RR*  ->  -.  0  < -oo )
15435, 153ax-mp 5 . . . . 5  |-  -.  0  < -oo
155 breq2 3933 . . . . 5  |-  ( C  = -oo  ->  (
0  <  C  <->  0  < -oo ) )
156154, 155mtbiri 664 . . . 4  |-  ( C  = -oo  ->  -.  0  <  C )
157156adantl 275 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  ->  -.  0  <  C
)
158152, 157pm2.21dd 609 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
159 elxr 9575 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
16032, 159sylib 121 . 2  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
161119, 151, 158, 160mpjao3dan 1285 1  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( {
( A +e
B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 961    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2308   {cpr 3528   class class class wbr 3929  (class class class)co 5774  infcinf 6870   RRcr 7631   0cc0 7632    + caddc 7635   +oocpnf 7809   -oocmnf 7810   RR*cxr 7811    < clt 7812    <_ cle 7813   RR+crp 9453   +ecxad 9569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-rp 9454  df-xneg 9571  df-xadd 9572  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783
This theorem is referenced by:  bdxmet  12684
  Copyright terms: Public domain W3C validator