Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrbdtri | Unicode version |
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.) |
Ref | Expression |
---|---|
xrbdtri | inf inf inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 | |
2 | simp1r 1017 | . . . . . . 7 | |
3 | 2 | ad3antrrr 489 | . . . . . 6 |
4 | simplr 525 | . . . . . 6 | |
5 | simp2r 1019 | . . . . . . 7 | |
6 | 5 | ad3antrrr 489 | . . . . . 6 |
7 | simpllr 529 | . . . . . . 7 | |
8 | simp3r 1021 | . . . . . . . 8 | |
9 | 8 | ad3antrrr 489 | . . . . . . 7 |
10 | 7, 9 | elrpd 9650 | . . . . . 6 |
11 | bdtri 11203 | . . . . . 6 inf inf inf | |
12 | 1, 3, 4, 6, 10, 11 | syl221anc 1244 | . . . . 5 inf inf inf |
13 | 1, 4 | rexaddd 9811 | . . . . . . . 8 |
14 | 13 | preq1d 3666 | . . . . . . 7 |
15 | 14 | infeq1d 6989 | . . . . . 6 inf inf |
16 | 1, 4 | readdcld 7949 | . . . . . . 7 |
17 | xrminrecl 11236 | . . . . . . 7 inf inf | |
18 | 16, 7, 17 | syl2anc 409 | . . . . . 6 inf inf |
19 | 15, 18 | eqtrd 2203 | . . . . 5 inf inf |
20 | xrminrecl 11236 | . . . . . . . 8 inf inf | |
21 | 1, 7, 20 | syl2anc 409 | . . . . . . 7 inf inf |
22 | xrminrecl 11236 | . . . . . . . 8 inf inf | |
23 | 4, 7, 22 | syl2anc 409 | . . . . . . 7 inf inf |
24 | 21, 23 | oveq12d 5871 | . . . . . 6 inf inf inf inf |
25 | mincl 11194 | . . . . . . . 8 inf | |
26 | 1, 7, 25 | syl2anc 409 | . . . . . . 7 inf |
27 | mincl 11194 | . . . . . . . 8 inf | |
28 | 4, 7, 27 | syl2anc 409 | . . . . . . 7 inf |
29 | 26, 28 | rexaddd 9811 | . . . . . 6 inf inf inf inf |
30 | 24, 29 | eqtrd 2203 | . . . . 5 inf inf inf inf |
31 | 12, 19, 30 | 3brtr4d 4021 | . . . 4 inf inf inf |
32 | simp3l 1020 | . . . . . . . 8 | |
33 | 32 | xaddid1d 9821 | . . . . . . 7 |
34 | 32 | xrleidd 9758 | . . . . . . . 8 |
35 | 0xr 7966 | . . . . . . . . . . 11 | |
36 | 35 | a1i 9 | . . . . . . . . . 10 |
37 | 36, 32, 8 | xrltled 9756 | . . . . . . . . 9 |
38 | simp2l 1018 | . . . . . . . . . 10 | |
39 | xrlemininf 11234 | . . . . . . . . . 10 inf | |
40 | 36, 38, 32, 39 | syl3anc 1233 | . . . . . . . . 9 inf |
41 | 5, 37, 40 | mpbir2and 939 | . . . . . . . 8 inf |
42 | xrmincl 11229 | . . . . . . . . . 10 inf | |
43 | 38, 32, 42 | syl2anc 409 | . . . . . . . . 9 inf |
44 | xle2add 9836 | . . . . . . . . 9 inf inf inf | |
45 | 32, 36, 32, 43, 44 | syl22anc 1234 | . . . . . . . 8 inf inf |
46 | 34, 41, 45 | mp2and 431 | . . . . . . 7 inf |
47 | 33, 46 | eqbrtrrd 4013 | . . . . . 6 inf |
48 | 47 | ad3antrrr 489 | . . . . 5 inf |
49 | simp1l 1016 | . . . . . . . 8 | |
50 | 49, 38 | xaddcld 9841 | . . . . . . 7 |
51 | 50 | ad3antrrr 489 | . . . . . 6 |
52 | 32 | ad3antrrr 489 | . . . . . 6 |
53 | pnfge 9746 | . . . . . . . 8 | |
54 | 52, 53 | syl 14 | . . . . . . 7 |
55 | simpr 109 | . . . . . . . . 9 | |
56 | 55 | oveq1d 5868 | . . . . . . . 8 |
57 | simpl2l 1045 | . . . . . . . . . 10 | |
58 | 57 | ad2antrr 485 | . . . . . . . . 9 |
59 | simplr 525 | . . . . . . . . . 10 | |
60 | 59 | renemnfd 7971 | . . . . . . . . 9 |
61 | xaddpnf2 9804 | . . . . . . . . 9 | |
62 | 58, 60, 61 | syl2anc 409 | . . . . . . . 8 |
63 | 56, 62 | eqtrd 2203 | . . . . . . 7 |
64 | 54, 63 | breqtrrd 4017 | . . . . . 6 |
65 | xrmineqinf 11232 | . . . . . 6 inf | |
66 | 51, 52, 64, 65 | syl3anc 1233 | . . . . 5 inf |
67 | 49 | ad3antrrr 489 | . . . . . . 7 |
68 | 54, 55 | breqtrrd 4017 | . . . . . . 7 |
69 | xrmineqinf 11232 | . . . . . . 7 inf | |
70 | 67, 52, 68, 69 | syl3anc 1233 | . . . . . 6 inf |
71 | 70 | oveq1d 5868 | . . . . 5 inf inf inf |
72 | 48, 66, 71 | 3brtr4d 4021 | . . . 4 inf inf inf |
73 | simpr 109 | . . . . 5 | |
74 | ge0nemnf 9781 | . . . . . . 7 | |
75 | 49, 2, 74 | syl2anc 409 | . . . . . 6 |
76 | 75 | ad3antrrr 489 | . . . . 5 |
77 | 73, 76 | pm2.21ddne 2423 | . . . 4 inf inf inf |
78 | elxr 9733 | . . . . . 6 | |
79 | 49, 78 | sylib 121 | . . . . 5 |
80 | 79 | ad2antrr 485 | . . . 4 |
81 | 31, 72, 77, 80 | mpjao3dan 1302 | . . 3 inf inf inf |
82 | xrlemininf 11234 | . . . . . . . 8 inf | |
83 | 36, 49, 32, 82 | syl3anc 1233 | . . . . . . 7 inf |
84 | 2, 37, 83 | mpbir2and 939 | . . . . . 6 inf |
85 | xrmincl 11229 | . . . . . . . 8 inf | |
86 | 49, 32, 85 | syl2anc 409 | . . . . . . 7 inf |
87 | xle2add 9836 | . . . . . . 7 inf inf inf | |
88 | 36, 32, 86, 32, 87 | syl22anc 1234 | . . . . . 6 inf inf |
89 | 84, 34, 88 | mp2and 431 | . . . . 5 inf |
90 | 89 | ad2antrr 485 | . . . 4 inf |
91 | 50 | ad2antrr 485 | . . . . . 6 |
92 | 32 | ad2antrr 485 | . . . . . 6 |
93 | 92, 53 | syl 14 | . . . . . . 7 |
94 | simpr 109 | . . . . . . . . 9 | |
95 | 94 | oveq2d 5869 | . . . . . . . 8 |
96 | xaddpnf1 9803 | . . . . . . . . . 10 | |
97 | 49, 75, 96 | syl2anc 409 | . . . . . . . . 9 |
98 | 97 | ad2antrr 485 | . . . . . . . 8 |
99 | 95, 98 | eqtrd 2203 | . . . . . . 7 |
100 | 93, 99 | breqtrrd 4017 | . . . . . 6 |
101 | 91, 92, 100, 65 | syl3anc 1233 | . . . . 5 inf |
102 | xaddid2 9820 | . . . . . 6 | |
103 | 92, 102 | syl 14 | . . . . 5 |
104 | 101, 103 | eqtr4d 2206 | . . . 4 inf |
105 | 57 | adantr 274 | . . . . . 6 |
106 | 93, 94 | breqtrrd 4017 | . . . . . 6 |
107 | xrmineqinf 11232 | . . . . . 6 inf | |
108 | 105, 92, 106, 107 | syl3anc 1233 | . . . . 5 inf |
109 | 108 | oveq2d 5869 | . . . 4 inf inf inf |
110 | 90, 104, 109 | 3brtr4d 4021 | . . 3 inf inf inf |
111 | simpr 109 | . . . 4 | |
112 | 57 | adantr 274 | . . . . 5 |
113 | 5 | ad2antrr 485 | . . . . 5 |
114 | ge0nemnf 9781 | . . . . 5 | |
115 | 112, 113, 114 | syl2anc 409 | . . . 4 |
116 | 111, 115 | pm2.21ddne 2423 | . . 3 inf inf inf |
117 | elxr 9733 | . . . 4 | |
118 | 57, 117 | sylib 121 | . . 3 |
119 | 81, 110, 116, 118 | mpjao3dan 1302 | . 2 inf inf inf |
120 | 50 | adantr 274 | . . . 4 |
121 | 120 | xrleidd 9758 | . . 3 |
122 | prcom 3659 | . . . . 5 | |
123 | 122 | infeq1i 6990 | . . . 4 inf inf |
124 | 32 | adantr 274 | . . . . 5 |
125 | pnfge 9746 | . . . . . . 7 | |
126 | 120, 125 | syl 14 | . . . . . 6 |
127 | simpr 109 | . . . . . 6 | |
128 | 126, 127 | breqtrrd 4017 | . . . . 5 |
129 | xrmineqinf 11232 | . . . . 5 inf | |
130 | 124, 120, 128, 129 | syl3anc 1233 | . . . 4 inf |
131 | 123, 130 | eqtr3id 2217 | . . 3 inf |
132 | prcom 3659 | . . . . . 6 | |
133 | 132 | infeq1i 6990 | . . . . 5 inf inf |
134 | 49 | adantr 274 | . . . . . 6 |
135 | pnfge 9746 | . . . . . . . 8 | |
136 | 134, 135 | syl 14 | . . . . . . 7 |
137 | 136, 127 | breqtrrd 4017 | . . . . . 6 |
138 | xrmineqinf 11232 | . . . . . 6 inf | |
139 | 124, 134, 137, 138 | syl3anc 1233 | . . . . 5 inf |
140 | 133, 139 | eqtr3id 2217 | . . . 4 inf |
141 | prcom 3659 | . . . . . 6 | |
142 | 141 | infeq1i 6990 | . . . . 5 inf inf |
143 | 38 | adantr 274 | . . . . . 6 |
144 | pnfge 9746 | . . . . . . . 8 | |
145 | 143, 144 | syl 14 | . . . . . . 7 |
146 | 145, 127 | breqtrrd 4017 | . . . . . 6 |
147 | xrmineqinf 11232 | . . . . . 6 inf | |
148 | 124, 143, 146, 147 | syl3anc 1233 | . . . . 5 inf |
149 | 142, 148 | eqtr3id 2217 | . . . 4 inf |
150 | 140, 149 | oveq12d 5871 | . . 3 inf inf |
151 | 121, 131, 150 | 3brtr4d 4021 | . 2 inf inf inf |
152 | simpl3r 1048 | . . 3 | |
153 | nltmnf 9745 | . . . . . 6 | |
154 | 35, 153 | ax-mp 5 | . . . . 5 |
155 | breq2 3993 | . . . . 5 | |
156 | 154, 155 | mtbiri 670 | . . . 4 |
157 | 156 | adantl 275 | . . 3 |
158 | 152, 157 | pm2.21dd 615 | . 2 inf inf inf |
159 | elxr 9733 | . . 3 | |
160 | 32, 159 | sylib 121 | . 2 |
161 | 119, 151, 158, 160 | mpjao3dan 1302 | 1 inf inf inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 972 w3a 973 wceq 1348 wcel 2141 wne 2340 cpr 3584 class class class wbr 3989 (class class class)co 5853 infcinf 6960 cr 7773 cc0 7774 caddc 7777 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 crp 9610 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-xneg 9729 df-xadd 9730 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 |
This theorem is referenced by: bdxmet 13295 |
Copyright terms: Public domain | W3C validator |