Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrbdtri | Unicode version |
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.) |
Ref | Expression |
---|---|
xrbdtri | inf inf inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 | |
2 | simp1r 1017 | . . . . . . 7 | |
3 | 2 | ad3antrrr 489 | . . . . . 6 |
4 | simplr 525 | . . . . . 6 | |
5 | simp2r 1019 | . . . . . . 7 | |
6 | 5 | ad3antrrr 489 | . . . . . 6 |
7 | simpllr 529 | . . . . . . 7 | |
8 | simp3r 1021 | . . . . . . . 8 | |
9 | 8 | ad3antrrr 489 | . . . . . . 7 |
10 | 7, 9 | elrpd 9637 | . . . . . 6 |
11 | bdtri 11190 | . . . . . 6 inf inf inf | |
12 | 1, 3, 4, 6, 10, 11 | syl221anc 1244 | . . . . 5 inf inf inf |
13 | 1, 4 | rexaddd 9798 | . . . . . . . 8 |
14 | 13 | preq1d 3664 | . . . . . . 7 |
15 | 14 | infeq1d 6985 | . . . . . 6 inf inf |
16 | 1, 4 | readdcld 7936 | . . . . . . 7 |
17 | xrminrecl 11223 | . . . . . . 7 inf inf | |
18 | 16, 7, 17 | syl2anc 409 | . . . . . 6 inf inf |
19 | 15, 18 | eqtrd 2203 | . . . . 5 inf inf |
20 | xrminrecl 11223 | . . . . . . . 8 inf inf | |
21 | 1, 7, 20 | syl2anc 409 | . . . . . . 7 inf inf |
22 | xrminrecl 11223 | . . . . . . . 8 inf inf | |
23 | 4, 7, 22 | syl2anc 409 | . . . . . . 7 inf inf |
24 | 21, 23 | oveq12d 5868 | . . . . . 6 inf inf inf inf |
25 | mincl 11181 | . . . . . . . 8 inf | |
26 | 1, 7, 25 | syl2anc 409 | . . . . . . 7 inf |
27 | mincl 11181 | . . . . . . . 8 inf | |
28 | 4, 7, 27 | syl2anc 409 | . . . . . . 7 inf |
29 | 26, 28 | rexaddd 9798 | . . . . . 6 inf inf inf inf |
30 | 24, 29 | eqtrd 2203 | . . . . 5 inf inf inf inf |
31 | 12, 19, 30 | 3brtr4d 4019 | . . . 4 inf inf inf |
32 | simp3l 1020 | . . . . . . . 8 | |
33 | 32 | xaddid1d 9808 | . . . . . . 7 |
34 | 32 | xrleidd 9745 | . . . . . . . 8 |
35 | 0xr 7953 | . . . . . . . . . . 11 | |
36 | 35 | a1i 9 | . . . . . . . . . 10 |
37 | 36, 32, 8 | xrltled 9743 | . . . . . . . . 9 |
38 | simp2l 1018 | . . . . . . . . . 10 | |
39 | xrlemininf 11221 | . . . . . . . . . 10 inf | |
40 | 36, 38, 32, 39 | syl3anc 1233 | . . . . . . . . 9 inf |
41 | 5, 37, 40 | mpbir2and 939 | . . . . . . . 8 inf |
42 | xrmincl 11216 | . . . . . . . . . 10 inf | |
43 | 38, 32, 42 | syl2anc 409 | . . . . . . . . 9 inf |
44 | xle2add 9823 | . . . . . . . . 9 inf inf inf | |
45 | 32, 36, 32, 43, 44 | syl22anc 1234 | . . . . . . . 8 inf inf |
46 | 34, 41, 45 | mp2and 431 | . . . . . . 7 inf |
47 | 33, 46 | eqbrtrrd 4011 | . . . . . 6 inf |
48 | 47 | ad3antrrr 489 | . . . . 5 inf |
49 | simp1l 1016 | . . . . . . . 8 | |
50 | 49, 38 | xaddcld 9828 | . . . . . . 7 |
51 | 50 | ad3antrrr 489 | . . . . . 6 |
52 | 32 | ad3antrrr 489 | . . . . . 6 |
53 | pnfge 9733 | . . . . . . . 8 | |
54 | 52, 53 | syl 14 | . . . . . . 7 |
55 | simpr 109 | . . . . . . . . 9 | |
56 | 55 | oveq1d 5865 | . . . . . . . 8 |
57 | simpl2l 1045 | . . . . . . . . . 10 | |
58 | 57 | ad2antrr 485 | . . . . . . . . 9 |
59 | simplr 525 | . . . . . . . . . 10 | |
60 | 59 | renemnfd 7958 | . . . . . . . . 9 |
61 | xaddpnf2 9791 | . . . . . . . . 9 | |
62 | 58, 60, 61 | syl2anc 409 | . . . . . . . 8 |
63 | 56, 62 | eqtrd 2203 | . . . . . . 7 |
64 | 54, 63 | breqtrrd 4015 | . . . . . 6 |
65 | xrmineqinf 11219 | . . . . . 6 inf | |
66 | 51, 52, 64, 65 | syl3anc 1233 | . . . . 5 inf |
67 | 49 | ad3antrrr 489 | . . . . . . 7 |
68 | 54, 55 | breqtrrd 4015 | . . . . . . 7 |
69 | xrmineqinf 11219 | . . . . . . 7 inf | |
70 | 67, 52, 68, 69 | syl3anc 1233 | . . . . . 6 inf |
71 | 70 | oveq1d 5865 | . . . . 5 inf inf inf |
72 | 48, 66, 71 | 3brtr4d 4019 | . . . 4 inf inf inf |
73 | simpr 109 | . . . . 5 | |
74 | ge0nemnf 9768 | . . . . . . 7 | |
75 | 49, 2, 74 | syl2anc 409 | . . . . . 6 |
76 | 75 | ad3antrrr 489 | . . . . 5 |
77 | 73, 76 | pm2.21ddne 2423 | . . . 4 inf inf inf |
78 | elxr 9720 | . . . . . 6 | |
79 | 49, 78 | sylib 121 | . . . . 5 |
80 | 79 | ad2antrr 485 | . . . 4 |
81 | 31, 72, 77, 80 | mpjao3dan 1302 | . . 3 inf inf inf |
82 | xrlemininf 11221 | . . . . . . . 8 inf | |
83 | 36, 49, 32, 82 | syl3anc 1233 | . . . . . . 7 inf |
84 | 2, 37, 83 | mpbir2and 939 | . . . . . 6 inf |
85 | xrmincl 11216 | . . . . . . . 8 inf | |
86 | 49, 32, 85 | syl2anc 409 | . . . . . . 7 inf |
87 | xle2add 9823 | . . . . . . 7 inf inf inf | |
88 | 36, 32, 86, 32, 87 | syl22anc 1234 | . . . . . 6 inf inf |
89 | 84, 34, 88 | mp2and 431 | . . . . 5 inf |
90 | 89 | ad2antrr 485 | . . . 4 inf |
91 | 50 | ad2antrr 485 | . . . . . 6 |
92 | 32 | ad2antrr 485 | . . . . . 6 |
93 | 92, 53 | syl 14 | . . . . . . 7 |
94 | simpr 109 | . . . . . . . . 9 | |
95 | 94 | oveq2d 5866 | . . . . . . . 8 |
96 | xaddpnf1 9790 | . . . . . . . . . 10 | |
97 | 49, 75, 96 | syl2anc 409 | . . . . . . . . 9 |
98 | 97 | ad2antrr 485 | . . . . . . . 8 |
99 | 95, 98 | eqtrd 2203 | . . . . . . 7 |
100 | 93, 99 | breqtrrd 4015 | . . . . . 6 |
101 | 91, 92, 100, 65 | syl3anc 1233 | . . . . 5 inf |
102 | xaddid2 9807 | . . . . . 6 | |
103 | 92, 102 | syl 14 | . . . . 5 |
104 | 101, 103 | eqtr4d 2206 | . . . 4 inf |
105 | 57 | adantr 274 | . . . . . 6 |
106 | 93, 94 | breqtrrd 4015 | . . . . . 6 |
107 | xrmineqinf 11219 | . . . . . 6 inf | |
108 | 105, 92, 106, 107 | syl3anc 1233 | . . . . 5 inf |
109 | 108 | oveq2d 5866 | . . . 4 inf inf inf |
110 | 90, 104, 109 | 3brtr4d 4019 | . . 3 inf inf inf |
111 | simpr 109 | . . . 4 | |
112 | 57 | adantr 274 | . . . . 5 |
113 | 5 | ad2antrr 485 | . . . . 5 |
114 | ge0nemnf 9768 | . . . . 5 | |
115 | 112, 113, 114 | syl2anc 409 | . . . 4 |
116 | 111, 115 | pm2.21ddne 2423 | . . 3 inf inf inf |
117 | elxr 9720 | . . . 4 | |
118 | 57, 117 | sylib 121 | . . 3 |
119 | 81, 110, 116, 118 | mpjao3dan 1302 | . 2 inf inf inf |
120 | 50 | adantr 274 | . . . 4 |
121 | 120 | xrleidd 9745 | . . 3 |
122 | prcom 3657 | . . . . 5 | |
123 | 122 | infeq1i 6986 | . . . 4 inf inf |
124 | 32 | adantr 274 | . . . . 5 |
125 | pnfge 9733 | . . . . . . 7 | |
126 | 120, 125 | syl 14 | . . . . . 6 |
127 | simpr 109 | . . . . . 6 | |
128 | 126, 127 | breqtrrd 4015 | . . . . 5 |
129 | xrmineqinf 11219 | . . . . 5 inf | |
130 | 124, 120, 128, 129 | syl3anc 1233 | . . . 4 inf |
131 | 123, 130 | eqtr3id 2217 | . . 3 inf |
132 | prcom 3657 | . . . . . 6 | |
133 | 132 | infeq1i 6986 | . . . . 5 inf inf |
134 | 49 | adantr 274 | . . . . . 6 |
135 | pnfge 9733 | . . . . . . . 8 | |
136 | 134, 135 | syl 14 | . . . . . . 7 |
137 | 136, 127 | breqtrrd 4015 | . . . . . 6 |
138 | xrmineqinf 11219 | . . . . . 6 inf | |
139 | 124, 134, 137, 138 | syl3anc 1233 | . . . . 5 inf |
140 | 133, 139 | eqtr3id 2217 | . . . 4 inf |
141 | prcom 3657 | . . . . . 6 | |
142 | 141 | infeq1i 6986 | . . . . 5 inf inf |
143 | 38 | adantr 274 | . . . . . 6 |
144 | pnfge 9733 | . . . . . . . 8 | |
145 | 143, 144 | syl 14 | . . . . . . 7 |
146 | 145, 127 | breqtrrd 4015 | . . . . . 6 |
147 | xrmineqinf 11219 | . . . . . 6 inf | |
148 | 124, 143, 146, 147 | syl3anc 1233 | . . . . 5 inf |
149 | 142, 148 | eqtr3id 2217 | . . . 4 inf |
150 | 140, 149 | oveq12d 5868 | . . 3 inf inf |
151 | 121, 131, 150 | 3brtr4d 4019 | . 2 inf inf inf |
152 | simpl3r 1048 | . . 3 | |
153 | nltmnf 9732 | . . . . . 6 | |
154 | 35, 153 | ax-mp 5 | . . . . 5 |
155 | breq2 3991 | . . . . 5 | |
156 | 154, 155 | mtbiri 670 | . . . 4 |
157 | 156 | adantl 275 | . . 3 |
158 | 152, 157 | pm2.21dd 615 | . 2 inf inf inf |
159 | elxr 9720 | . . 3 | |
160 | 32, 159 | sylib 121 | . 2 |
161 | 119, 151, 158, 160 | mpjao3dan 1302 | 1 inf inf inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3o 972 w3a 973 wceq 1348 wcel 2141 wne 2340 cpr 3582 class class class wbr 3987 (class class class)co 5850 infcinf 6956 cr 7760 cc0 7761 caddc 7764 cpnf 7938 cmnf 7939 cxr 7940 clt 7941 cle 7942 crp 9597 cxad 9714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-sup 6957 df-inf 6958 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-rp 9598 df-xneg 9716 df-xadd 9717 df-seqfrec 10389 df-exp 10463 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 |
This theorem is referenced by: bdxmet 13254 |
Copyright terms: Public domain | W3C validator |