ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrbdtri Unicode version

Theorem xrbdtri 11226
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
xrbdtri  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( {
( A +e
B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )

Proof of Theorem xrbdtri
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  RR )
2 simp1r 1017 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  A )
32ad3antrrr 489 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <_  A
)
4 simplr 525 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  RR )
5 simp2r 1019 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  B )
65ad3antrrr 489 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <_  B
)
7 simpllr 529 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  C  e.  RR )
8 simp3r 1021 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <  C )
98ad3antrrr 489 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <  C
)
107, 9elrpd 9637 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  C  e.  RR+ )
11 bdtri 11190 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
121, 3, 4, 6, 10, 11syl221anc 1244 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_ 
(inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
131, 4rexaddd 9798 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A +e B )  =  ( A  +  B
) )
1413preq1d 3664 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  { ( A +e B ) ,  C }  =  { ( A  +  B ) ,  C } )
1514infeq1d 6985 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  ) )
161, 4readdcld 7936 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  +  B )  e.  RR )
17 xrminrecl 11223 . . . . . . 7  |-  ( ( ( A  +  B
)  e.  RR  /\  C  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
1816, 7, 17syl2anc 409 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
1915, 18eqtrd 2203 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
20 xrminrecl 11223 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR ,  <  ) )
211, 7, 20syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { A ,  C } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR ,  <  )
)
22 xrminrecl 11223 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR ,  <  ) )
234, 7, 22syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { B ,  C } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR ,  <  )
)
2421, 23oveq12d 5868 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  ) +einf ( { B ,  C } ,  RR ,  <  ) ) )
25 mincl 11181 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  e.  RR )
261, 7, 25syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  e.  RR )
27 mincl 11181 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  e.  RR )
284, 7, 27syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  e.  RR )
2926, 28rexaddd 9798 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR ,  <  ) +einf ( { B ,  C } ,  RR ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
3024, 29eqtrd 2203 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
3112, 19, 303brtr4d 4019 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
32 simp3l 1020 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  e.  RR* )
3332xaddid1d 9808 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C +e 0 )  =  C )
3432xrleidd 9745 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  <_  C )
35 0xr 7953 . . . . . . . . . . 11  |-  0  e.  RR*
3635a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  e.  RR* )
3736, 32, 8xrltled 9743 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  C )
38 simp2l 1018 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  B  e.  RR* )
39 xrlemininf 11221 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
0  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( 0  <_  B  /\  0  <_  C ) ) )
4036, 38, 32, 39syl3anc 1233 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( 0  <_  B  /\  0  <_  C ) ) )
415, 37, 40mpbir2and 939 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_ inf ( { B ,  C } ,  RR* ,  <  ) )
42 xrmincl 11216 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
4338, 32, 42syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
44 xle2add 9823 . . . . . . . . 9  |-  ( ( ( C  e.  RR*  /\  0  e.  RR* )  /\  ( C  e.  RR*  /\ inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* ) )  -> 
( ( C  <_  C  /\  0  <_ inf ( { B ,  C } ,  RR* ,  <  )
)  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) ) )
4532, 36, 32, 43, 44syl22anc 1234 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( ( C  <_  C  /\  0  <_ inf ( { B ,  C } ,  RR* ,  <  ) )  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) ) )
4634, 41, 45mp2and 431 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
4733, 46eqbrtrrd 4011 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
4847ad3antrrr 489 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  )
) )
49 simp1l 1016 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  A  e.  RR* )
5049, 38xaddcld 9828 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A +e B )  e.  RR* )
5150ad3antrrr 489 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  e. 
RR* )
5232ad3antrrr 489 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  e.  RR* )
53 pnfge 9733 . . . . . . . 8  |-  ( C  e.  RR*  ->  C  <_ +oo )
5452, 53syl 14 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_ +oo )
55 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
5655oveq1d 5865 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  =  ( +oo +e
B ) )
57 simpl2l 1045 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  ->  B  e.  RR* )
5857ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
59 simplr 525 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR )
6059renemnfd 7958 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  =/= -oo )
61 xaddpnf2 9791 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
6258, 60, 61syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo +e B )  = +oo )
6356, 62eqtrd 2203 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  = +oo )
6454, 63breqtrrd 4015 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  ( A +e B ) )
65 xrmineqinf 11219 . . . . . 6  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR*  /\  C  <_  ( A +e
B ) )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
6651, 52, 64, 65syl3anc 1233 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
6749ad3antrrr 489 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  e.  RR* )
6854, 55breqtrrd 4015 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  A
)
69 xrmineqinf 11219 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  C  <_  A )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  C )
7067, 52, 68, 69syl3anc 1233 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  C )
7170oveq1d 5865 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
7248, 66, 713brtr4d 4019 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
73 simpr 109 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
74 ge0nemnf 9768 . . . . . . 7  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )
7549, 2, 74syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  A  =/= -oo )
7675ad3antrrr 489 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  =/= -oo )
7773, 76pm2.21ddne 2423 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
78 elxr 9720 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7949, 78sylib 121 . . . . 5  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
8079ad2antrr 485 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
8131, 72, 77, 80mpjao3dan 1302 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
82 xrlemininf 11221 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  C  e. 
RR* )  ->  (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  <->  ( 0  <_  A  /\  0  <_  C ) ) )
8336, 49, 32, 82syl3anc 1233 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0  <_ inf ( { A ,  C } ,  RR* ,  <  )  <->  ( 0  <_  A  /\  0  <_  C ) ) )
842, 37, 83mpbir2and 939 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_ inf ( { A ,  C } ,  RR* ,  <  ) )
85 xrmincl 11216 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  -> inf ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
8649, 32, 85syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
87 xle2add 9823 . . . . . . 7  |-  ( ( ( 0  e.  RR*  /\  C  e.  RR* )  /\  (inf ( { A ,  C } ,  RR* ,  <  )  e.  RR*  /\  C  e.  RR* )
)  ->  ( (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  /\  C  <_  C )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) ) )
8836, 32, 86, 32, 87syl22anc 1234 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  /\  C  <_  C )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) ) )
8984, 34, 88mp2and 431 . . . . 5  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0 +e C )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +e C ) )
9089ad2antrr 485 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) )
9150ad2antrr 485 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  e. 
RR* )
9232ad2antrr 485 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  e.  RR* )
9392, 53syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_ +oo )
94 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  B  = +oo )
9594oveq2d 5866 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  =  ( A +e +oo ) )
96 xaddpnf1 9790 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
9749, 75, 96syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A +e +oo )  = +oo )
9897ad2antrr 485 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e +oo )  = +oo )
9995, 98eqtrd 2203 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  = +oo )
10093, 99breqtrrd 4015 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_  ( A +e B ) )
10191, 92, 100, 65syl3anc 1233 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
102 xaddid2 9807 . . . . . 6  |-  ( C  e.  RR*  ->  ( 0 +e C )  =  C )
10392, 102syl 14 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( 0 +e C )  =  C )
104101, 103eqtr4d 2206 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  ( 0 +e C ) )
10557adantr 274 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  B  e.  RR* )
10693, 94breqtrrd 4015 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_  B
)
107 xrmineqinf 11219 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  C  <_  B )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  C )
108105, 92, 106, 107syl3anc 1233 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  C )
109108oveq2d 5866 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) )
11090, 104, 1093brtr4d 4019 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
111 simpr 109 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  = -oo )
11257adantr 274 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  e.  RR* )
1135ad2antrr 485 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  0  <_  B
)
114 ge0nemnf 9768 . . . . 5  |-  ( ( B  e.  RR*  /\  0  <_  B )  ->  B  =/= -oo )
115112, 113, 114syl2anc 409 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  =/= -oo )
116111, 115pm2.21ddne 2423 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
117 elxr 9720 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
11857, 117sylib 121 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
11981, 110, 116, 118mpjao3dan 1302 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
12050adantr 274 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  e.  RR* )
121120xrleidd 9745 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_  ( A +e B ) )
122 prcom 3657 . . . . 5  |-  { C ,  ( A +e B ) }  =  { ( A +e B ) ,  C }
123122infeq1i 6986 . . . 4  |- inf ( { C ,  ( A +e B ) } ,  RR* ,  <  )  = inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )
12432adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  C  e.  RR* )
125 pnfge 9733 . . . . . . 7  |-  ( ( A +e B )  e.  RR*  ->  ( A +e B )  <_ +oo )
126120, 125syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_ +oo )
127 simpr 109 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  C  = +oo )
128126, 127breqtrrd 4015 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_  C
)
129 xrmineqinf 11219 . . . . 5  |-  ( ( C  e.  RR*  /\  ( A +e B )  e.  RR*  /\  ( A +e B )  <_  C )  -> inf ( { C ,  ( A +e B ) } ,  RR* ,  <  )  =  ( A +e B ) )
130124, 120, 128, 129syl3anc 1233 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C , 
( A +e
B ) } ,  RR* ,  <  )  =  ( A +e
B ) )
131123, 130eqtr3id 2217 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  ( A +e
B ) )
132 prcom 3657 . . . . . 6  |-  { C ,  A }  =  { A ,  C }
133132infeq1i 6986 . . . . 5  |- inf ( { C ,  A } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR* ,  <  )
13449adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  e.  RR* )
135 pnfge 9733 . . . . . . . 8  |-  ( A  e.  RR*  ->  A  <_ +oo )
136134, 135syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  <_ +oo )
137136, 127breqtrrd 4015 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  <_  C )
138 xrmineqinf 11219 . . . . . 6  |-  ( ( C  e.  RR*  /\  A  e.  RR*  /\  A  <_  C )  -> inf ( { C ,  A } ,  RR* ,  <  )  =  A )
139124, 134, 137, 138syl3anc 1233 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C ,  A } ,  RR* ,  <  )  =  A )
140133, 139eqtr3id 2217 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  A )
141 prcom 3657 . . . . . 6  |-  { C ,  B }  =  { B ,  C }
142141infeq1i 6986 . . . . 5  |- inf ( { C ,  B } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR* ,  <  )
14338adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  e.  RR* )
144 pnfge 9733 . . . . . . . 8  |-  ( B  e.  RR*  ->  B  <_ +oo )
145143, 144syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  <_ +oo )
146145, 127breqtrrd 4015 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  <_  C )
147 xrmineqinf 11219 . . . . . 6  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  B  <_  C )  -> inf ( { C ,  B } ,  RR* ,  <  )  =  B )
148124, 143, 146, 147syl3anc 1233 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C ,  B } ,  RR* ,  <  )  =  B )
149142, 148eqtr3id 2217 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  B )
150140, 149oveq12d 5868 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  ( A +e B ) )
151121, 131, 1503brtr4d 4019 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
152 simpl3r 1048 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  ->  0  <  C )
153 nltmnf 9732 . . . . . 6  |-  ( 0  e.  RR*  ->  -.  0  < -oo )
15435, 153ax-mp 5 . . . . 5  |-  -.  0  < -oo
155 breq2 3991 . . . . 5  |-  ( C  = -oo  ->  (
0  <  C  <->  0  < -oo ) )
156154, 155mtbiri 670 . . . 4  |-  ( C  = -oo  ->  -.  0  <  C )
157156adantl 275 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  ->  -.  0  <  C
)
158152, 157pm2.21dd 615 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
159 elxr 9720 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
16032, 159sylib 121 . 2  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
161119, 151, 158, 160mpjao3dan 1302 1  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( {
( A +e
B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 972    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   {cpr 3582   class class class wbr 3987  (class class class)co 5850  infcinf 6956   RRcr 7760   0cc0 7761    + caddc 7764   +oocpnf 7938   -oocmnf 7939   RR*cxr 7940    < clt 7941    <_ cle 7942   RR+crp 9597   +ecxad 9714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-rp 9598  df-xneg 9716  df-xadd 9717  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950
This theorem is referenced by:  bdxmet  13254
  Copyright terms: Public domain W3C validator