| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrbdtri | Unicode version | ||
| Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.) |
| Ref | Expression |
|---|---|
| xrbdtri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | simp1r 1046 |
. . . . . . 7
| |
| 3 | 2 | ad3antrrr 492 |
. . . . . 6
|
| 4 | simplr 528 |
. . . . . 6
| |
| 5 | simp2r 1048 |
. . . . . . 7
| |
| 6 | 5 | ad3antrrr 492 |
. . . . . 6
|
| 7 | simpllr 534 |
. . . . . . 7
| |
| 8 | simp3r 1050 |
. . . . . . . 8
| |
| 9 | 8 | ad3antrrr 492 |
. . . . . . 7
|
| 10 | 7, 9 | elrpd 9885 |
. . . . . 6
|
| 11 | bdtri 11746 |
. . . . . 6
| |
| 12 | 1, 3, 4, 6, 10, 11 | syl221anc 1282 |
. . . . 5
|
| 13 | 1, 4 | rexaddd 10046 |
. . . . . . . 8
|
| 14 | 13 | preq1d 3749 |
. . . . . . 7
|
| 15 | 14 | infeq1d 7175 |
. . . . . 6
|
| 16 | 1, 4 | readdcld 8172 |
. . . . . . 7
|
| 17 | xrminrecl 11779 |
. . . . . . 7
| |
| 18 | 16, 7, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | 15, 18 | eqtrd 2262 |
. . . . 5
|
| 20 | xrminrecl 11779 |
. . . . . . . 8
| |
| 21 | 1, 7, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | xrminrecl 11779 |
. . . . . . . 8
| |
| 23 | 4, 7, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | 21, 23 | oveq12d 6018 |
. . . . . 6
|
| 25 | mincl 11737 |
. . . . . . . 8
| |
| 26 | 1, 7, 25 | syl2anc 411 |
. . . . . . 7
|
| 27 | mincl 11737 |
. . . . . . . 8
| |
| 28 | 4, 7, 27 | syl2anc 411 |
. . . . . . 7
|
| 29 | 26, 28 | rexaddd 10046 |
. . . . . 6
|
| 30 | 24, 29 | eqtrd 2262 |
. . . . 5
|
| 31 | 12, 19, 30 | 3brtr4d 4114 |
. . . 4
|
| 32 | simp3l 1049 |
. . . . . . . 8
| |
| 33 | 32 | xaddid1d 10056 |
. . . . . . 7
|
| 34 | 32 | xrleidd 9993 |
. . . . . . . 8
|
| 35 | 0xr 8189 |
. . . . . . . . . . 11
| |
| 36 | 35 | a1i 9 |
. . . . . . . . . 10
|
| 37 | 36, 32, 8 | xrltled 9991 |
. . . . . . . . 9
|
| 38 | simp2l 1047 |
. . . . . . . . . 10
| |
| 39 | xrlemininf 11777 |
. . . . . . . . . 10
| |
| 40 | 36, 38, 32, 39 | syl3anc 1271 |
. . . . . . . . 9
|
| 41 | 5, 37, 40 | mpbir2and 950 |
. . . . . . . 8
|
| 42 | xrmincl 11772 |
. . . . . . . . . 10
| |
| 43 | 38, 32, 42 | syl2anc 411 |
. . . . . . . . 9
|
| 44 | xle2add 10071 |
. . . . . . . . 9
| |
| 45 | 32, 36, 32, 43, 44 | syl22anc 1272 |
. . . . . . . 8
|
| 46 | 34, 41, 45 | mp2and 433 |
. . . . . . 7
|
| 47 | 33, 46 | eqbrtrrd 4106 |
. . . . . 6
|
| 48 | 47 | ad3antrrr 492 |
. . . . 5
|
| 49 | simp1l 1045 |
. . . . . . . 8
| |
| 50 | 49, 38 | xaddcld 10076 |
. . . . . . 7
|
| 51 | 50 | ad3antrrr 492 |
. . . . . 6
|
| 52 | 32 | ad3antrrr 492 |
. . . . . 6
|
| 53 | pnfge 9981 |
. . . . . . . 8
| |
| 54 | 52, 53 | syl 14 |
. . . . . . 7
|
| 55 | simpr 110 |
. . . . . . . . 9
| |
| 56 | 55 | oveq1d 6015 |
. . . . . . . 8
|
| 57 | simpl2l 1074 |
. . . . . . . . . 10
| |
| 58 | 57 | ad2antrr 488 |
. . . . . . . . 9
|
| 59 | simplr 528 |
. . . . . . . . . 10
| |
| 60 | 59 | renemnfd 8194 |
. . . . . . . . 9
|
| 61 | xaddpnf2 10039 |
. . . . . . . . 9
| |
| 62 | 58, 60, 61 | syl2anc 411 |
. . . . . . . 8
|
| 63 | 56, 62 | eqtrd 2262 |
. . . . . . 7
|
| 64 | 54, 63 | breqtrrd 4110 |
. . . . . 6
|
| 65 | xrmineqinf 11775 |
. . . . . 6
| |
| 66 | 51, 52, 64, 65 | syl3anc 1271 |
. . . . 5
|
| 67 | 49 | ad3antrrr 492 |
. . . . . . 7
|
| 68 | 54, 55 | breqtrrd 4110 |
. . . . . . 7
|
| 69 | xrmineqinf 11775 |
. . . . . . 7
| |
| 70 | 67, 52, 68, 69 | syl3anc 1271 |
. . . . . 6
|
| 71 | 70 | oveq1d 6015 |
. . . . 5
|
| 72 | 48, 66, 71 | 3brtr4d 4114 |
. . . 4
|
| 73 | simpr 110 |
. . . . 5
| |
| 74 | ge0nemnf 10016 |
. . . . . . 7
| |
| 75 | 49, 2, 74 | syl2anc 411 |
. . . . . 6
|
| 76 | 75 | ad3antrrr 492 |
. . . . 5
|
| 77 | 73, 76 | pm2.21ddne 2483 |
. . . 4
|
| 78 | elxr 9968 |
. . . . . 6
| |
| 79 | 49, 78 | sylib 122 |
. . . . 5
|
| 80 | 79 | ad2antrr 488 |
. . . 4
|
| 81 | 31, 72, 77, 80 | mpjao3dan 1341 |
. . 3
|
| 82 | xrlemininf 11777 |
. . . . . . . 8
| |
| 83 | 36, 49, 32, 82 | syl3anc 1271 |
. . . . . . 7
|
| 84 | 2, 37, 83 | mpbir2and 950 |
. . . . . 6
|
| 85 | xrmincl 11772 |
. . . . . . . 8
| |
| 86 | 49, 32, 85 | syl2anc 411 |
. . . . . . 7
|
| 87 | xle2add 10071 |
. . . . . . 7
| |
| 88 | 36, 32, 86, 32, 87 | syl22anc 1272 |
. . . . . 6
|
| 89 | 84, 34, 88 | mp2and 433 |
. . . . 5
|
| 90 | 89 | ad2antrr 488 |
. . . 4
|
| 91 | 50 | ad2antrr 488 |
. . . . . 6
|
| 92 | 32 | ad2antrr 488 |
. . . . . 6
|
| 93 | 92, 53 | syl 14 |
. . . . . . 7
|
| 94 | simpr 110 |
. . . . . . . . 9
| |
| 95 | 94 | oveq2d 6016 |
. . . . . . . 8
|
| 96 | xaddpnf1 10038 |
. . . . . . . . . 10
| |
| 97 | 49, 75, 96 | syl2anc 411 |
. . . . . . . . 9
|
| 98 | 97 | ad2antrr 488 |
. . . . . . . 8
|
| 99 | 95, 98 | eqtrd 2262 |
. . . . . . 7
|
| 100 | 93, 99 | breqtrrd 4110 |
. . . . . 6
|
| 101 | 91, 92, 100, 65 | syl3anc 1271 |
. . . . 5
|
| 102 | xaddid2 10055 |
. . . . . 6
| |
| 103 | 92, 102 | syl 14 |
. . . . 5
|
| 104 | 101, 103 | eqtr4d 2265 |
. . . 4
|
| 105 | 57 | adantr 276 |
. . . . . 6
|
| 106 | 93, 94 | breqtrrd 4110 |
. . . . . 6
|
| 107 | xrmineqinf 11775 |
. . . . . 6
| |
| 108 | 105, 92, 106, 107 | syl3anc 1271 |
. . . . 5
|
| 109 | 108 | oveq2d 6016 |
. . . 4
|
| 110 | 90, 104, 109 | 3brtr4d 4114 |
. . 3
|
| 111 | simpr 110 |
. . . 4
| |
| 112 | 57 | adantr 276 |
. . . . 5
|
| 113 | 5 | ad2antrr 488 |
. . . . 5
|
| 114 | ge0nemnf 10016 |
. . . . 5
| |
| 115 | 112, 113, 114 | syl2anc 411 |
. . . 4
|
| 116 | 111, 115 | pm2.21ddne 2483 |
. . 3
|
| 117 | elxr 9968 |
. . . 4
| |
| 118 | 57, 117 | sylib 122 |
. . 3
|
| 119 | 81, 110, 116, 118 | mpjao3dan 1341 |
. 2
|
| 120 | 50 | adantr 276 |
. . . 4
|
| 121 | 120 | xrleidd 9993 |
. . 3
|
| 122 | prcom 3742 |
. . . . 5
| |
| 123 | 122 | infeq1i 7176 |
. . . 4
|
| 124 | 32 | adantr 276 |
. . . . 5
|
| 125 | pnfge 9981 |
. . . . . . 7
| |
| 126 | 120, 125 | syl 14 |
. . . . . 6
|
| 127 | simpr 110 |
. . . . . 6
| |
| 128 | 126, 127 | breqtrrd 4110 |
. . . . 5
|
| 129 | xrmineqinf 11775 |
. . . . 5
| |
| 130 | 124, 120, 128, 129 | syl3anc 1271 |
. . . 4
|
| 131 | 123, 130 | eqtr3id 2276 |
. . 3
|
| 132 | prcom 3742 |
. . . . . 6
| |
| 133 | 132 | infeq1i 7176 |
. . . . 5
|
| 134 | 49 | adantr 276 |
. . . . . 6
|
| 135 | pnfge 9981 |
. . . . . . . 8
| |
| 136 | 134, 135 | syl 14 |
. . . . . . 7
|
| 137 | 136, 127 | breqtrrd 4110 |
. . . . . 6
|
| 138 | xrmineqinf 11775 |
. . . . . 6
| |
| 139 | 124, 134, 137, 138 | syl3anc 1271 |
. . . . 5
|
| 140 | 133, 139 | eqtr3id 2276 |
. . . 4
|
| 141 | prcom 3742 |
. . . . . 6
| |
| 142 | 141 | infeq1i 7176 |
. . . . 5
|
| 143 | 38 | adantr 276 |
. . . . . 6
|
| 144 | pnfge 9981 |
. . . . . . . 8
| |
| 145 | 143, 144 | syl 14 |
. . . . . . 7
|
| 146 | 145, 127 | breqtrrd 4110 |
. . . . . 6
|
| 147 | xrmineqinf 11775 |
. . . . . 6
| |
| 148 | 124, 143, 146, 147 | syl3anc 1271 |
. . . . 5
|
| 149 | 142, 148 | eqtr3id 2276 |
. . . 4
|
| 150 | 140, 149 | oveq12d 6018 |
. . 3
|
| 151 | 121, 131, 150 | 3brtr4d 4114 |
. 2
|
| 152 | simpl3r 1077 |
. . 3
| |
| 153 | nltmnf 9980 |
. . . . . 6
| |
| 154 | 35, 153 | ax-mp 5 |
. . . . 5
|
| 155 | breq2 4086 |
. . . . 5
| |
| 156 | 154, 155 | mtbiri 679 |
. . . 4
|
| 157 | 156 | adantl 277 |
. . 3
|
| 158 | 152, 157 | pm2.21dd 623 |
. 2
|
| 159 | elxr 9968 |
. . 3
| |
| 160 | 32, 159 | sylib 122 |
. 2
|
| 161 | 119, 151, 158, 160 | mpjao3dan 1341 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-rp 9846 df-xneg 9964 df-xadd 9965 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 |
| This theorem is referenced by: bdxmet 15169 |
| Copyright terms: Public domain | W3C validator |