ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrbdtri Unicode version

Theorem xrbdtri 11506
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
xrbdtri  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( {
( A +e
B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )

Proof of Theorem xrbdtri
StepHypRef Expression
1 simpr 110 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  RR )
2 simp1r 1024 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  A )
32ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <_  A
)
4 simplr 528 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  RR )
5 simp2r 1026 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  B )
65ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <_  B
)
7 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  C  e.  RR )
8 simp3r 1028 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <  C )
98ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <  C
)
107, 9elrpd 9797 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  C  e.  RR+ )
11 bdtri 11470 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
121, 3, 4, 6, 10, 11syl221anc 1260 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_ 
(inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
131, 4rexaddd 9958 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A +e B )  =  ( A  +  B
) )
1413preq1d 3715 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  { ( A +e B ) ,  C }  =  { ( A  +  B ) ,  C } )
1514infeq1d 7096 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  ) )
161, 4readdcld 8084 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  +  B )  e.  RR )
17 xrminrecl 11503 . . . . . . 7  |-  ( ( ( A  +  B
)  e.  RR  /\  C  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
1816, 7, 17syl2anc 411 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
1915, 18eqtrd 2237 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
20 xrminrecl 11503 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR ,  <  ) )
211, 7, 20syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { A ,  C } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR ,  <  )
)
22 xrminrecl 11503 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR ,  <  ) )
234, 7, 22syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { B ,  C } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR ,  <  )
)
2421, 23oveq12d 5952 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  ) +einf ( { B ,  C } ,  RR ,  <  ) ) )
25 mincl 11461 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  e.  RR )
261, 7, 25syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  e.  RR )
27 mincl 11461 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  e.  RR )
284, 7, 27syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  e.  RR )
2926, 28rexaddd 9958 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR ,  <  ) +einf ( { B ,  C } ,  RR ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
3024, 29eqtrd 2237 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
3112, 19, 303brtr4d 4075 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
32 simp3l 1027 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  e.  RR* )
3332xaddid1d 9968 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C +e 0 )  =  C )
3432xrleidd 9905 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  <_  C )
35 0xr 8101 . . . . . . . . . . 11  |-  0  e.  RR*
3635a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  e.  RR* )
3736, 32, 8xrltled 9903 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  C )
38 simp2l 1025 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  B  e.  RR* )
39 xrlemininf 11501 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
0  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( 0  <_  B  /\  0  <_  C ) ) )
4036, 38, 32, 39syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( 0  <_  B  /\  0  <_  C ) ) )
415, 37, 40mpbir2and 946 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_ inf ( { B ,  C } ,  RR* ,  <  ) )
42 xrmincl 11496 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
4338, 32, 42syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
44 xle2add 9983 . . . . . . . . 9  |-  ( ( ( C  e.  RR*  /\  0  e.  RR* )  /\  ( C  e.  RR*  /\ inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* ) )  -> 
( ( C  <_  C  /\  0  <_ inf ( { B ,  C } ,  RR* ,  <  )
)  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) ) )
4532, 36, 32, 43, 44syl22anc 1250 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( ( C  <_  C  /\  0  <_ inf ( { B ,  C } ,  RR* ,  <  ) )  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) ) )
4634, 41, 45mp2and 433 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
4733, 46eqbrtrrd 4067 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
4847ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  )
) )
49 simp1l 1023 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  A  e.  RR* )
5049, 38xaddcld 9988 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A +e B )  e.  RR* )
5150ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  e. 
RR* )
5232ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  e.  RR* )
53 pnfge 9893 . . . . . . . 8  |-  ( C  e.  RR*  ->  C  <_ +oo )
5452, 53syl 14 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_ +oo )
55 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
5655oveq1d 5949 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  =  ( +oo +e
B ) )
57 simpl2l 1052 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  ->  B  e.  RR* )
5857ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
59 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR )
6059renemnfd 8106 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  =/= -oo )
61 xaddpnf2 9951 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
6258, 60, 61syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo +e B )  = +oo )
6356, 62eqtrd 2237 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  = +oo )
6454, 63breqtrrd 4071 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  ( A +e B ) )
65 xrmineqinf 11499 . . . . . 6  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR*  /\  C  <_  ( A +e
B ) )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
6651, 52, 64, 65syl3anc 1249 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
6749ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  e.  RR* )
6854, 55breqtrrd 4071 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  A
)
69 xrmineqinf 11499 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  C  <_  A )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  C )
7067, 52, 68, 69syl3anc 1249 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  C )
7170oveq1d 5949 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
7248, 66, 713brtr4d 4075 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
73 simpr 110 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
74 ge0nemnf 9928 . . . . . . 7  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )
7549, 2, 74syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  A  =/= -oo )
7675ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  =/= -oo )
7773, 76pm2.21ddne 2458 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
78 elxr 9880 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7949, 78sylib 122 . . . . 5  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
8079ad2antrr 488 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
8131, 72, 77, 80mpjao3dan 1319 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
82 xrlemininf 11501 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  C  e. 
RR* )  ->  (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  <->  ( 0  <_  A  /\  0  <_  C ) ) )
8336, 49, 32, 82syl3anc 1249 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0  <_ inf ( { A ,  C } ,  RR* ,  <  )  <->  ( 0  <_  A  /\  0  <_  C ) ) )
842, 37, 83mpbir2and 946 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_ inf ( { A ,  C } ,  RR* ,  <  ) )
85 xrmincl 11496 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  -> inf ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
8649, 32, 85syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
87 xle2add 9983 . . . . . . 7  |-  ( ( ( 0  e.  RR*  /\  C  e.  RR* )  /\  (inf ( { A ,  C } ,  RR* ,  <  )  e.  RR*  /\  C  e.  RR* )
)  ->  ( (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  /\  C  <_  C )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) ) )
8836, 32, 86, 32, 87syl22anc 1250 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  /\  C  <_  C )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) ) )
8984, 34, 88mp2and 433 . . . . 5  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0 +e C )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +e C ) )
9089ad2antrr 488 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) )
9150ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  e. 
RR* )
9232ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  e.  RR* )
9392, 53syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_ +oo )
94 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  B  = +oo )
9594oveq2d 5950 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  =  ( A +e +oo ) )
96 xaddpnf1 9950 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
9749, 75, 96syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A +e +oo )  = +oo )
9897ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e +oo )  = +oo )
9995, 98eqtrd 2237 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  = +oo )
10093, 99breqtrrd 4071 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_  ( A +e B ) )
10191, 92, 100, 65syl3anc 1249 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
102 xaddid2 9967 . . . . . 6  |-  ( C  e.  RR*  ->  ( 0 +e C )  =  C )
10392, 102syl 14 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( 0 +e C )  =  C )
104101, 103eqtr4d 2240 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  ( 0 +e C ) )
10557adantr 276 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  B  e.  RR* )
10693, 94breqtrrd 4071 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_  B
)
107 xrmineqinf 11499 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  C  <_  B )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  C )
108105, 92, 106, 107syl3anc 1249 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  C )
109108oveq2d 5950 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) )
11090, 104, 1093brtr4d 4075 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
111 simpr 110 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  = -oo )
11257adantr 276 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  e.  RR* )
1135ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  0  <_  B
)
114 ge0nemnf 9928 . . . . 5  |-  ( ( B  e.  RR*  /\  0  <_  B )  ->  B  =/= -oo )
115112, 113, 114syl2anc 411 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  =/= -oo )
116111, 115pm2.21ddne 2458 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
117 elxr 9880 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
11857, 117sylib 122 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
11981, 110, 116, 118mpjao3dan 1319 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
12050adantr 276 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  e.  RR* )
121120xrleidd 9905 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_  ( A +e B ) )
122 prcom 3708 . . . . 5  |-  { C ,  ( A +e B ) }  =  { ( A +e B ) ,  C }
123122infeq1i 7097 . . . 4  |- inf ( { C ,  ( A +e B ) } ,  RR* ,  <  )  = inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )
12432adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  C  e.  RR* )
125 pnfge 9893 . . . . . . 7  |-  ( ( A +e B )  e.  RR*  ->  ( A +e B )  <_ +oo )
126120, 125syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_ +oo )
127 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  C  = +oo )
128126, 127breqtrrd 4071 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_  C
)
129 xrmineqinf 11499 . . . . 5  |-  ( ( C  e.  RR*  /\  ( A +e B )  e.  RR*  /\  ( A +e B )  <_  C )  -> inf ( { C ,  ( A +e B ) } ,  RR* ,  <  )  =  ( A +e B ) )
130124, 120, 128, 129syl3anc 1249 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C , 
( A +e
B ) } ,  RR* ,  <  )  =  ( A +e
B ) )
131123, 130eqtr3id 2251 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  ( A +e
B ) )
132 prcom 3708 . . . . . 6  |-  { C ,  A }  =  { A ,  C }
133132infeq1i 7097 . . . . 5  |- inf ( { C ,  A } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR* ,  <  )
13449adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  e.  RR* )
135 pnfge 9893 . . . . . . . 8  |-  ( A  e.  RR*  ->  A  <_ +oo )
136134, 135syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  <_ +oo )
137136, 127breqtrrd 4071 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  <_  C )
138 xrmineqinf 11499 . . . . . 6  |-  ( ( C  e.  RR*  /\  A  e.  RR*  /\  A  <_  C )  -> inf ( { C ,  A } ,  RR* ,  <  )  =  A )
139124, 134, 137, 138syl3anc 1249 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C ,  A } ,  RR* ,  <  )  =  A )
140133, 139eqtr3id 2251 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  A )
141 prcom 3708 . . . . . 6  |-  { C ,  B }  =  { B ,  C }
142141infeq1i 7097 . . . . 5  |- inf ( { C ,  B } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR* ,  <  )
14338adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  e.  RR* )
144 pnfge 9893 . . . . . . . 8  |-  ( B  e.  RR*  ->  B  <_ +oo )
145143, 144syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  <_ +oo )
146145, 127breqtrrd 4071 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  <_  C )
147 xrmineqinf 11499 . . . . . 6  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  B  <_  C )  -> inf ( { C ,  B } ,  RR* ,  <  )  =  B )
148124, 143, 146, 147syl3anc 1249 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C ,  B } ,  RR* ,  <  )  =  B )
149142, 148eqtr3id 2251 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  B )
150140, 149oveq12d 5952 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  ( A +e B ) )
151121, 131, 1503brtr4d 4075 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
152 simpl3r 1055 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  ->  0  <  C )
153 nltmnf 9892 . . . . . 6  |-  ( 0  e.  RR*  ->  -.  0  < -oo )
15435, 153ax-mp 5 . . . . 5  |-  -.  0  < -oo
155 breq2 4047 . . . . 5  |-  ( C  = -oo  ->  (
0  <  C  <->  0  < -oo ) )
156154, 155mtbiri 676 . . . 4  |-  ( C  = -oo  ->  -.  0  <  C )
157156adantl 277 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  ->  -.  0  <  C
)
158152, 157pm2.21dd 621 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
159 elxr 9880 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
16032, 159sylib 122 . 2  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
161119, 151, 158, 160mpjao3dan 1319 1  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( {
( A +e
B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375   {cpr 3633   class class class wbr 4043  (class class class)co 5934  infcinf 7067   RRcr 7906   0cc0 7907    + caddc 7910   +oocpnf 8086   -oocmnf 8087   RR*cxr 8088    < clt 8089    <_ cle 8090   RR+crp 9757   +ecxad 9874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-rp 9758  df-xneg 9876  df-xadd 9877  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229
This theorem is referenced by:  bdxmet  14891
  Copyright terms: Public domain W3C validator