| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrbdtri | Unicode version | ||
| Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.) |
| Ref | Expression |
|---|---|
| xrbdtri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | simp1r 1024 |
. . . . . . 7
| |
| 3 | 2 | ad3antrrr 492 |
. . . . . 6
|
| 4 | simplr 528 |
. . . . . 6
| |
| 5 | simp2r 1026 |
. . . . . . 7
| |
| 6 | 5 | ad3antrrr 492 |
. . . . . 6
|
| 7 | simpllr 534 |
. . . . . . 7
| |
| 8 | simp3r 1028 |
. . . . . . . 8
| |
| 9 | 8 | ad3antrrr 492 |
. . . . . . 7
|
| 10 | 7, 9 | elrpd 9814 |
. . . . . 6
|
| 11 | bdtri 11493 |
. . . . . 6
| |
| 12 | 1, 3, 4, 6, 10, 11 | syl221anc 1260 |
. . . . 5
|
| 13 | 1, 4 | rexaddd 9975 |
. . . . . . . 8
|
| 14 | 13 | preq1d 3715 |
. . . . . . 7
|
| 15 | 14 | infeq1d 7113 |
. . . . . 6
|
| 16 | 1, 4 | readdcld 8101 |
. . . . . . 7
|
| 17 | xrminrecl 11526 |
. . . . . . 7
| |
| 18 | 16, 7, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | 15, 18 | eqtrd 2237 |
. . . . 5
|
| 20 | xrminrecl 11526 |
. . . . . . . 8
| |
| 21 | 1, 7, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | xrminrecl 11526 |
. . . . . . . 8
| |
| 23 | 4, 7, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | 21, 23 | oveq12d 5961 |
. . . . . 6
|
| 25 | mincl 11484 |
. . . . . . . 8
| |
| 26 | 1, 7, 25 | syl2anc 411 |
. . . . . . 7
|
| 27 | mincl 11484 |
. . . . . . . 8
| |
| 28 | 4, 7, 27 | syl2anc 411 |
. . . . . . 7
|
| 29 | 26, 28 | rexaddd 9975 |
. . . . . 6
|
| 30 | 24, 29 | eqtrd 2237 |
. . . . 5
|
| 31 | 12, 19, 30 | 3brtr4d 4075 |
. . . 4
|
| 32 | simp3l 1027 |
. . . . . . . 8
| |
| 33 | 32 | xaddid1d 9985 |
. . . . . . 7
|
| 34 | 32 | xrleidd 9922 |
. . . . . . . 8
|
| 35 | 0xr 8118 |
. . . . . . . . . . 11
| |
| 36 | 35 | a1i 9 |
. . . . . . . . . 10
|
| 37 | 36, 32, 8 | xrltled 9920 |
. . . . . . . . 9
|
| 38 | simp2l 1025 |
. . . . . . . . . 10
| |
| 39 | xrlemininf 11524 |
. . . . . . . . . 10
| |
| 40 | 36, 38, 32, 39 | syl3anc 1249 |
. . . . . . . . 9
|
| 41 | 5, 37, 40 | mpbir2and 946 |
. . . . . . . 8
|
| 42 | xrmincl 11519 |
. . . . . . . . . 10
| |
| 43 | 38, 32, 42 | syl2anc 411 |
. . . . . . . . 9
|
| 44 | xle2add 10000 |
. . . . . . . . 9
| |
| 45 | 32, 36, 32, 43, 44 | syl22anc 1250 |
. . . . . . . 8
|
| 46 | 34, 41, 45 | mp2and 433 |
. . . . . . 7
|
| 47 | 33, 46 | eqbrtrrd 4067 |
. . . . . 6
|
| 48 | 47 | ad3antrrr 492 |
. . . . 5
|
| 49 | simp1l 1023 |
. . . . . . . 8
| |
| 50 | 49, 38 | xaddcld 10005 |
. . . . . . 7
|
| 51 | 50 | ad3antrrr 492 |
. . . . . 6
|
| 52 | 32 | ad3antrrr 492 |
. . . . . 6
|
| 53 | pnfge 9910 |
. . . . . . . 8
| |
| 54 | 52, 53 | syl 14 |
. . . . . . 7
|
| 55 | simpr 110 |
. . . . . . . . 9
| |
| 56 | 55 | oveq1d 5958 |
. . . . . . . 8
|
| 57 | simpl2l 1052 |
. . . . . . . . . 10
| |
| 58 | 57 | ad2antrr 488 |
. . . . . . . . 9
|
| 59 | simplr 528 |
. . . . . . . . . 10
| |
| 60 | 59 | renemnfd 8123 |
. . . . . . . . 9
|
| 61 | xaddpnf2 9968 |
. . . . . . . . 9
| |
| 62 | 58, 60, 61 | syl2anc 411 |
. . . . . . . 8
|
| 63 | 56, 62 | eqtrd 2237 |
. . . . . . 7
|
| 64 | 54, 63 | breqtrrd 4071 |
. . . . . 6
|
| 65 | xrmineqinf 11522 |
. . . . . 6
| |
| 66 | 51, 52, 64, 65 | syl3anc 1249 |
. . . . 5
|
| 67 | 49 | ad3antrrr 492 |
. . . . . . 7
|
| 68 | 54, 55 | breqtrrd 4071 |
. . . . . . 7
|
| 69 | xrmineqinf 11522 |
. . . . . . 7
| |
| 70 | 67, 52, 68, 69 | syl3anc 1249 |
. . . . . 6
|
| 71 | 70 | oveq1d 5958 |
. . . . 5
|
| 72 | 48, 66, 71 | 3brtr4d 4075 |
. . . 4
|
| 73 | simpr 110 |
. . . . 5
| |
| 74 | ge0nemnf 9945 |
. . . . . . 7
| |
| 75 | 49, 2, 74 | syl2anc 411 |
. . . . . 6
|
| 76 | 75 | ad3antrrr 492 |
. . . . 5
|
| 77 | 73, 76 | pm2.21ddne 2458 |
. . . 4
|
| 78 | elxr 9897 |
. . . . . 6
| |
| 79 | 49, 78 | sylib 122 |
. . . . 5
|
| 80 | 79 | ad2antrr 488 |
. . . 4
|
| 81 | 31, 72, 77, 80 | mpjao3dan 1319 |
. . 3
|
| 82 | xrlemininf 11524 |
. . . . . . . 8
| |
| 83 | 36, 49, 32, 82 | syl3anc 1249 |
. . . . . . 7
|
| 84 | 2, 37, 83 | mpbir2and 946 |
. . . . . 6
|
| 85 | xrmincl 11519 |
. . . . . . . 8
| |
| 86 | 49, 32, 85 | syl2anc 411 |
. . . . . . 7
|
| 87 | xle2add 10000 |
. . . . . . 7
| |
| 88 | 36, 32, 86, 32, 87 | syl22anc 1250 |
. . . . . 6
|
| 89 | 84, 34, 88 | mp2and 433 |
. . . . 5
|
| 90 | 89 | ad2antrr 488 |
. . . 4
|
| 91 | 50 | ad2antrr 488 |
. . . . . 6
|
| 92 | 32 | ad2antrr 488 |
. . . . . 6
|
| 93 | 92, 53 | syl 14 |
. . . . . . 7
|
| 94 | simpr 110 |
. . . . . . . . 9
| |
| 95 | 94 | oveq2d 5959 |
. . . . . . . 8
|
| 96 | xaddpnf1 9967 |
. . . . . . . . . 10
| |
| 97 | 49, 75, 96 | syl2anc 411 |
. . . . . . . . 9
|
| 98 | 97 | ad2antrr 488 |
. . . . . . . 8
|
| 99 | 95, 98 | eqtrd 2237 |
. . . . . . 7
|
| 100 | 93, 99 | breqtrrd 4071 |
. . . . . 6
|
| 101 | 91, 92, 100, 65 | syl3anc 1249 |
. . . . 5
|
| 102 | xaddid2 9984 |
. . . . . 6
| |
| 103 | 92, 102 | syl 14 |
. . . . 5
|
| 104 | 101, 103 | eqtr4d 2240 |
. . . 4
|
| 105 | 57 | adantr 276 |
. . . . . 6
|
| 106 | 93, 94 | breqtrrd 4071 |
. . . . . 6
|
| 107 | xrmineqinf 11522 |
. . . . . 6
| |
| 108 | 105, 92, 106, 107 | syl3anc 1249 |
. . . . 5
|
| 109 | 108 | oveq2d 5959 |
. . . 4
|
| 110 | 90, 104, 109 | 3brtr4d 4075 |
. . 3
|
| 111 | simpr 110 |
. . . 4
| |
| 112 | 57 | adantr 276 |
. . . . 5
|
| 113 | 5 | ad2antrr 488 |
. . . . 5
|
| 114 | ge0nemnf 9945 |
. . . . 5
| |
| 115 | 112, 113, 114 | syl2anc 411 |
. . . 4
|
| 116 | 111, 115 | pm2.21ddne 2458 |
. . 3
|
| 117 | elxr 9897 |
. . . 4
| |
| 118 | 57, 117 | sylib 122 |
. . 3
|
| 119 | 81, 110, 116, 118 | mpjao3dan 1319 |
. 2
|
| 120 | 50 | adantr 276 |
. . . 4
|
| 121 | 120 | xrleidd 9922 |
. . 3
|
| 122 | prcom 3708 |
. . . . 5
| |
| 123 | 122 | infeq1i 7114 |
. . . 4
|
| 124 | 32 | adantr 276 |
. . . . 5
|
| 125 | pnfge 9910 |
. . . . . . 7
| |
| 126 | 120, 125 | syl 14 |
. . . . . 6
|
| 127 | simpr 110 |
. . . . . 6
| |
| 128 | 126, 127 | breqtrrd 4071 |
. . . . 5
|
| 129 | xrmineqinf 11522 |
. . . . 5
| |
| 130 | 124, 120, 128, 129 | syl3anc 1249 |
. . . 4
|
| 131 | 123, 130 | eqtr3id 2251 |
. . 3
|
| 132 | prcom 3708 |
. . . . . 6
| |
| 133 | 132 | infeq1i 7114 |
. . . . 5
|
| 134 | 49 | adantr 276 |
. . . . . 6
|
| 135 | pnfge 9910 |
. . . . . . . 8
| |
| 136 | 134, 135 | syl 14 |
. . . . . . 7
|
| 137 | 136, 127 | breqtrrd 4071 |
. . . . . 6
|
| 138 | xrmineqinf 11522 |
. . . . . 6
| |
| 139 | 124, 134, 137, 138 | syl3anc 1249 |
. . . . 5
|
| 140 | 133, 139 | eqtr3id 2251 |
. . . 4
|
| 141 | prcom 3708 |
. . . . . 6
| |
| 142 | 141 | infeq1i 7114 |
. . . . 5
|
| 143 | 38 | adantr 276 |
. . . . . 6
|
| 144 | pnfge 9910 |
. . . . . . . 8
| |
| 145 | 143, 144 | syl 14 |
. . . . . . 7
|
| 146 | 145, 127 | breqtrrd 4071 |
. . . . . 6
|
| 147 | xrmineqinf 11522 |
. . . . . 6
| |
| 148 | 124, 143, 146, 147 | syl3anc 1249 |
. . . . 5
|
| 149 | 142, 148 | eqtr3id 2251 |
. . . 4
|
| 150 | 140, 149 | oveq12d 5961 |
. . 3
|
| 151 | 121, 131, 150 | 3brtr4d 4075 |
. 2
|
| 152 | simpl3r 1055 |
. . 3
| |
| 153 | nltmnf 9909 |
. . . . . 6
| |
| 154 | 35, 153 | ax-mp 5 |
. . . . 5
|
| 155 | breq2 4047 |
. . . . 5
| |
| 156 | 154, 155 | mtbiri 676 |
. . . 4
|
| 157 | 156 | adantl 277 |
. . 3
|
| 158 | 152, 157 | pm2.21dd 621 |
. 2
|
| 159 | elxr 9897 |
. . 3
| |
| 160 | 32, 159 | sylib 122 |
. 2
|
| 161 | 119, 151, 158, 160 | mpjao3dan 1319 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-rp 9775 df-xneg 9893 df-xadd 9894 df-seqfrec 10591 df-exp 10682 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 |
| This theorem is referenced by: bdxmet 14915 |
| Copyright terms: Public domain | W3C validator |