ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrbdtri Unicode version

Theorem xrbdtri 11077
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
xrbdtri  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( {
( A +e
B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )

Proof of Theorem xrbdtri
StepHypRef Expression
1 simpr 109 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  A  e.  RR )
2 simp1r 1007 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  A )
32ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <_  A
)
4 simplr 520 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  B  e.  RR )
5 simp2r 1009 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  B )
65ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <_  B
)
7 simpllr 524 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  C  e.  RR )
8 simp3r 1011 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <  C )
98ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  0  <  C
)
107, 9elrpd 9510 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  C  e.  RR+ )
11 bdtri 11043 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
121, 3, 4, 6, 10, 11syl221anc 1228 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_ 
(inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
131, 4rexaddd 9667 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A +e B )  =  ( A  +  B
) )
1413preq1d 3614 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  { ( A +e B ) ,  C }  =  { ( A  +  B ) ,  C } )
1514infeq1d 6907 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  ) )
161, 4readdcld 7819 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( A  +  B )  e.  RR )
17 xrminrecl 11074 . . . . . . 7  |-  ( ( ( A  +  B
)  e.  RR  /\  C  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
1816, 7, 17syl2anc 409 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
1915, 18eqtrd 2173 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  = inf ( { ( A  +  B ) ,  C } ,  RR ,  <  ) )
20 xrminrecl 11074 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR ,  <  ) )
211, 7, 20syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { A ,  C } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR ,  <  )
)
22 xrminrecl 11074 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR ,  <  ) )
234, 7, 22syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { B ,  C } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR ,  <  )
)
2421, 23oveq12d 5800 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  ) +einf ( { B ,  C } ,  RR ,  <  ) ) )
25 mincl 11034 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  e.  RR )
261, 7, 25syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  e.  RR )
27 mincl 11034 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  e.  RR )
284, 7, 27syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  e.  RR )
2926, 28rexaddd 9667 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR ,  <  ) +einf ( { B ,  C } ,  RR ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
3024, 29eqtrd 2173 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
3112, 19, 303brtr4d 3968 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
32 simp3l 1010 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  e.  RR* )
3332xaddid1d 9677 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C +e 0 )  =  C )
3432xrleidd 9617 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  <_  C )
35 0xr 7836 . . . . . . . . . . 11  |-  0  e.  RR*
3635a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  e.  RR* )
3736, 32, 8xrltled 9615 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_  C )
38 simp2l 1008 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  B  e.  RR* )
39 xrlemininf 11072 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
0  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( 0  <_  B  /\  0  <_  C ) ) )
4036, 38, 32, 39syl3anc 1217 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( 0  <_  B  /\  0  <_  C ) ) )
415, 37, 40mpbir2and 929 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_ inf ( { B ,  C } ,  RR* ,  <  ) )
42 xrmincl 11067 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  -> inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
4338, 32, 42syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
44 xle2add 9692 . . . . . . . . 9  |-  ( ( ( C  e.  RR*  /\  0  e.  RR* )  /\  ( C  e.  RR*  /\ inf ( { B ,  C } ,  RR* ,  <  )  e.  RR* ) )  -> 
( ( C  <_  C  /\  0  <_ inf ( { B ,  C } ,  RR* ,  <  )
)  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) ) )
4532, 36, 32, 43, 44syl22anc 1218 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( ( C  <_  C  /\  0  <_ inf ( { B ,  C } ,  RR* ,  <  ) )  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) ) )
4634, 41, 45mp2and 430 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C +e 0 )  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
4733, 46eqbrtrrd 3960 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  C  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
4847ad3antrrr 484 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  ( C +einf ( { B ,  C } ,  RR* ,  <  )
) )
49 simp1l 1006 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  A  e.  RR* )
5049, 38xaddcld 9697 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A +e B )  e.  RR* )
5150ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  e. 
RR* )
5232ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  e.  RR* )
53 pnfge 9605 . . . . . . . 8  |-  ( C  e.  RR*  ->  C  <_ +oo )
5452, 53syl 14 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_ +oo )
55 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
5655oveq1d 5797 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  =  ( +oo +e
B ) )
57 simpl2l 1035 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  ->  B  e.  RR* )
5857ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR* )
59 simplr 520 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  e.  RR )
6059renemnfd 7841 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  B  =/= -oo )
61 xaddpnf2 9660 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
6258, 60, 61syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( +oo +e B )  = +oo )
6356, 62eqtrd 2173 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A +e B )  = +oo )
6454, 63breqtrrd 3964 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  ( A +e B ) )
65 xrmineqinf 11070 . . . . . 6  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR*  /\  C  <_  ( A +e
B ) )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
6651, 52, 64, 65syl3anc 1217 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
6749ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  e.  RR* )
6854, 55breqtrrd 3964 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  C  <_  A
)
69 xrmineqinf 11070 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  C  <_  A )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  C )
7067, 52, 68, 69syl3anc 1217 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  C )
7170oveq1d 5797 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  ( C +einf ( { B ,  C } ,  RR* ,  <  ) ) )
7248, 66, 713brtr4d 3968 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
73 simpr 109 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
74 ge0nemnf 9637 . . . . . . 7  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  =/= -oo )
7549, 2, 74syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  A  =/= -oo )
7675ad3antrrr 484 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  =/= -oo )
7773, 76pm2.21ddne 2392 . . . 4  |-  ( ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  /\  A  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
78 elxr 9593 . . . . . 6  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7949, 78sylib 121 . . . . 5  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
8079ad2antrr 480 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
8131, 72, 77, 80mpjao3dan 1286 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
82 xrlemininf 11072 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  C  e. 
RR* )  ->  (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  <->  ( 0  <_  A  /\  0  <_  C ) ) )
8336, 49, 32, 82syl3anc 1217 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0  <_ inf ( { A ,  C } ,  RR* ,  <  )  <->  ( 0  <_  A  /\  0  <_  C ) ) )
842, 37, 83mpbir2and 929 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  0  <_ inf ( { A ,  C } ,  RR* ,  <  ) )
85 xrmincl 11067 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  -> inf ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
8649, 32, 85syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
87 xle2add 9692 . . . . . . 7  |-  ( ( ( 0  e.  RR*  /\  C  e.  RR* )  /\  (inf ( { A ,  C } ,  RR* ,  <  )  e.  RR*  /\  C  e.  RR* )
)  ->  ( (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  /\  C  <_  C )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) ) )
8836, 32, 86, 32, 87syl22anc 1218 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( (
0  <_ inf ( { A ,  C } ,  RR* ,  <  )  /\  C  <_  C )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) ) )
8984, 34, 88mp2and 430 . . . . 5  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( 0 +e C )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +e C ) )
9089ad2antrr 480 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( 0 +e C )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) )
9150ad2antrr 480 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  e. 
RR* )
9232ad2antrr 480 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  e.  RR* )
9392, 53syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_ +oo )
94 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  B  = +oo )
9594oveq2d 5798 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  =  ( A +e +oo ) )
96 xaddpnf1 9659 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
9749, 75, 96syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( A +e +oo )  = +oo )
9897ad2antrr 480 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e +oo )  = +oo )
9995, 98eqtrd 2173 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( A +e B )  = +oo )
10093, 99breqtrrd 3964 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_  ( A +e B ) )
10191, 92, 100, 65syl3anc 1217 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  C )
102 xaddid2 9676 . . . . . 6  |-  ( C  e.  RR*  ->  ( 0 +e C )  =  C )
10392, 102syl 14 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  ( 0 +e C )  =  C )
104101, 103eqtr4d 2176 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  ( 0 +e C ) )
10557adantr 274 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  B  e.  RR* )
10693, 94breqtrrd 3964 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  C  <_  B
)
107 xrmineqinf 11070 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  C  <_  B )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  C )
108105, 92, 106, 107syl3anc 1217 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  C )
109108oveq2d 5798 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  (inf ( { A ,  C } ,  RR* ,  <  ) +e
C ) )
11090, 104, 1093brtr4d 3968 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
111 simpr 109 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  = -oo )
11257adantr 274 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  e.  RR* )
1135ad2antrr 480 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  0  <_  B
)
114 ge0nemnf 9637 . . . . 5  |-  ( ( B  e.  RR*  /\  0  <_  B )  ->  B  =/= -oo )
115112, 113, 114syl2anc 409 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  ->  B  =/= -oo )
116111, 115pm2.21ddne 2392 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  /\  B  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
117 elxr 9593 . . . 4  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
11857, 117sylib 121 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
11981, 110, 116, 118mpjao3dan 1286 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  e.  RR )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
12050adantr 274 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  e.  RR* )
121120xrleidd 9617 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_  ( A +e B ) )
122 prcom 3607 . . . . 5  |-  { C ,  ( A +e B ) }  =  { ( A +e B ) ,  C }
123122infeq1i 6908 . . . 4  |- inf ( { C ,  ( A +e B ) } ,  RR* ,  <  )  = inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )
12432adantr 274 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  C  e.  RR* )
125 pnfge 9605 . . . . . . 7  |-  ( ( A +e B )  e.  RR*  ->  ( A +e B )  <_ +oo )
126120, 125syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_ +oo )
127 simpr 109 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  C  = +oo )
128126, 127breqtrrd 3964 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  ( A +e
B )  <_  C
)
129 xrmineqinf 11070 . . . . 5  |-  ( ( C  e.  RR*  /\  ( A +e B )  e.  RR*  /\  ( A +e B )  <_  C )  -> inf ( { C ,  ( A +e B ) } ,  RR* ,  <  )  =  ( A +e B ) )
130124, 120, 128, 129syl3anc 1217 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C , 
( A +e
B ) } ,  RR* ,  <  )  =  ( A +e
B ) )
131123, 130syl5eqr 2187 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  =  ( A +e
B ) )
132 prcom 3607 . . . . . 6  |-  { C ,  A }  =  { A ,  C }
133132infeq1i 6908 . . . . 5  |- inf ( { C ,  A } ,  RR* ,  <  )  = inf ( { A ,  C } ,  RR* ,  <  )
13449adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  e.  RR* )
135 pnfge 9605 . . . . . . . 8  |-  ( A  e.  RR*  ->  A  <_ +oo )
136134, 135syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  <_ +oo )
137136, 127breqtrrd 3964 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  A  <_  C )
138 xrmineqinf 11070 . . . . . 6  |-  ( ( C  e.  RR*  /\  A  e.  RR*  /\  A  <_  C )  -> inf ( { C ,  A } ,  RR* ,  <  )  =  A )
139124, 134, 137, 138syl3anc 1217 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C ,  A } ,  RR* ,  <  )  =  A )
140133, 139syl5eqr 2187 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { A ,  C } ,  RR* ,  <  )  =  A )
141 prcom 3607 . . . . . 6  |-  { C ,  B }  =  { B ,  C }
142141infeq1i 6908 . . . . 5  |- inf ( { C ,  B } ,  RR* ,  <  )  = inf ( { B ,  C } ,  RR* ,  <  )
14338adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  e.  RR* )
144 pnfge 9605 . . . . . . . 8  |-  ( B  e.  RR*  ->  B  <_ +oo )
145143, 144syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  <_ +oo )
146145, 127breqtrrd 3964 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  B  <_  C )
147 xrmineqinf 11070 . . . . . 6  |-  ( ( C  e.  RR*  /\  B  e.  RR*  /\  B  <_  C )  -> inf ( { C ,  B } ,  RR* ,  <  )  =  B )
148124, 143, 146, 147syl3anc 1217 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { C ,  B } ,  RR* ,  <  )  =  B )
149142, 148syl5eqr 2187 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { B ,  C } ,  RR* ,  <  )  =  B )
150140, 149oveq12d 5800 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  ->  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) )  =  ( A +e B ) )
151121, 131, 1503brtr4d 3968 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = +oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
152 simpl3r 1038 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  ->  0  <  C )
153 nltmnf 9604 . . . . . 6  |-  ( 0  e.  RR*  ->  -.  0  < -oo )
15435, 153ax-mp 5 . . . . 5  |-  -.  0  < -oo
155 breq2 3941 . . . . 5  |-  ( C  = -oo  ->  (
0  <  C  <->  0  < -oo ) )
156154, 155mtbiri 665 . . . 4  |-  ( C  = -oo  ->  -.  0  <  C )
157156adantl 275 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  ->  -.  0  <  C
)
158152, 157pm2.21dd 610 . 2  |-  ( ( ( ( A  e. 
RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  /\  C  = -oo )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  )  <_ 
(inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
159 elxr 9593 . . 3  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
16032, 159sylib 121 . 2  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
161119, 151, 158, 160mpjao3dan 1286 1  |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( {
( A +e
B ) ,  C } ,  RR* ,  <  )  <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 962    /\ w3a 963    = wceq 1332    e. wcel 1481    =/= wne 2309   {cpr 3533   class class class wbr 3937  (class class class)co 5782  infcinf 6878   RRcr 7643   0cc0 7644    + caddc 7647   +oocpnf 7821   -oocmnf 7822   RR*cxr 7823    < clt 7824    <_ cle 7825   RR+crp 9470   +ecxad 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-xneg 9589  df-xadd 9590  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  bdxmet  12709
  Copyright terms: Public domain W3C validator