ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssps Unicode version

Theorem blssps 15095
Description: Any point  P in a ball  B can be centered in another ball that is a subset of  B. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blssps  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  ran  ( ball `  D
)  /\  P  e.  B )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Distinct variable groups:    x, B    x, D    x, P    x, X

Proof of Theorem blssps
Dummy variables  r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrnps 15079 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( B  e.  ran  ( ball `  D
)  <->  E. y  e.  X  E. r  e.  RR*  B  =  ( y (
ball `  D )
r ) ) )
2 elblps 15058 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y
( ball `  D )
r )  <->  ( P  e.  X  /\  (
y D P )  <  r ) ) )
3 simpl1 1024 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  D  e.  (PsMet `  X )
)
4 simpl2 1025 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  y  e.  X )
5 simpr 110 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  P  e.  X )
6 psmetcl 14994 . . . . . . . . . . 11  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  P  e.  X )  ->  (
y D P )  e.  RR* )
73, 4, 5, 6syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  (
y D P )  e.  RR* )
8 simpl3 1026 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  r  e.  RR* )
9 qbtwnxr 10472 . . . . . . . . . . 11  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR*  /\  ( y D P )  < 
r )  ->  E. z  e.  QQ  ( ( y D P )  < 
z  /\  z  <  r ) )
1093expia 1229 . . . . . . . . . 10  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR* )  ->  (
( y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  <  z  /\  z  <  r ) ) )
117, 8, 10syl2anc 411 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  (
( y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  <  z  /\  z  <  r ) ) )
12 qre 9816 . . . . . . . . . . 11  |-  ( z  e.  QQ  ->  z  e.  RR )
13 simpll1 1060 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  D  e.  (PsMet `  X ) )
14 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  P  e.  X
)
15 simpll2 1061 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  y  e.  X
)
16 psmetsym 14997 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  y  e.  X )  ->  ( P D y )  =  ( y D P ) )
1713, 14, 15, 16syl3anc 1271 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  =  ( y D P ) )
18 simprrl 539 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( y D P )  <  z
)
1917, 18eqbrtrd 4104 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <  z
)
20 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR )
21 psmetcl 14994 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  y  e.  X )  ->  ( P D y )  e. 
RR* )
2213, 14, 15, 21syl3anc 1271 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  RR* )
23 rexr 8188 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  RR  ->  z  e.  RR* )
2423ad2antrl 490 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR* )
2522, 24, 19xrltled 9991 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_  z
)
26 psmetlecl 15002 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  (PsMet `  X )  /\  ( P  e.  X  /\  y  e.  X )  /\  ( z  e.  RR  /\  ( P D y )  <_  z )
)  ->  ( P D y )  e.  RR )
2713, 14, 15, 20, 25, 26syl122anc 1280 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  RR )
28 difrp 9884 . . . . . . . . . . . . . . 15  |-  ( ( ( P D y )  e.  RR  /\  z  e.  RR )  ->  ( ( P D y )  <  z  <->  ( z  -  ( P D y ) )  e.  RR+ ) )
2927, 20, 28syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( ( P D y )  < 
z  <->  ( z  -  ( P D y ) )  e.  RR+ )
)
3019, 29mpbid 147 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  -  ( P D y ) )  e.  RR+ )
3120, 27resubcld 8523 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  -  ( P D y ) )  e.  RR )
3222xrleidd 9993 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_  ( P D y ) )
3320recnd 8171 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  CC )
3427recnd 8171 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  CC )
3533, 34nncand 8458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  -  ( z  -  ( P D y ) ) )  =  ( P D y ) )
3632, 35breqtrrd 4110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_  (
z  -  ( z  -  ( P D y ) ) ) )
37 blss2ps 15074 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  y  e.  X )  /\  (
( z  -  ( P D y ) )  e.  RR  /\  z  e.  RR  /\  ( P D y )  <_ 
( z  -  (
z  -  ( P D y ) ) ) ) )  -> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
z ) )
3813, 14, 15, 31, 20, 36, 37syl33anc 1286 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P (
ball `  D )
( z  -  ( P D y ) ) )  C_  ( y
( ball `  D )
z ) )
39 simpll3 1062 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  r  e.  RR* )
40 simprrr 540 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <  r
)
4124, 39, 40xrltled 9991 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <_  r
)
42 ssblps 15093 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X )  /\  (
z  e.  RR*  /\  r  e.  RR* )  /\  z  <_  r )  ->  (
y ( ball `  D
) z )  C_  ( y ( ball `  D ) r ) )
4313, 15, 24, 39, 41, 42syl221anc 1282 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( y (
ball `  D )
z )  C_  (
y ( ball `  D
) r ) )
4438, 43sstrd 3234 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P (
ball `  D )
( z  -  ( P D y ) ) )  C_  ( y
( ball `  D )
r ) )
45 oveq2 6008 . . . . . . . . . . . . . . 15  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( P
( ball `  D )
x )  =  ( P ( ball `  D
) ( z  -  ( P D y ) ) ) )
4645sseq1d 3253 . . . . . . . . . . . . . 14  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r )  <-> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
r ) ) )
4746rspcev 2907 . . . . . . . . . . . . 13  |-  ( ( ( z  -  ( P D y ) )  e.  RR+  /\  ( P ( ball `  D
) ( z  -  ( P D y ) ) )  C_  (
y ( ball `  D
) r ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) )
4830, 44, 47syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) )
4948expr 375 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  z  e.  RR )  ->  ( ( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5012, 49sylan2 286 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  z  e.  QQ )  ->  ( ( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5150rexlimdva 2648 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  ( E. z  e.  QQ  ( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5211, 51syld 45 . . . . . . . 8  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  (
( y D P )  <  r  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5352expimpd 363 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  (
( P  e.  X  /\  ( y D P )  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
542, 53sylbid 150 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y
( ball `  D )
r )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
55 eleq2 2293 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( P  e.  B  <->  P  e.  ( y ( ball `  D ) r ) ) )
56 sseq2 3248 . . . . . . . 8  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P ( ball `  D ) x ) 
C_  B  <->  ( P
( ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
5756rexbidv 2531 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B 
<->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5855, 57imbi12d 234 . . . . . 6  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B )  <->  ( P  e.  ( y ( ball `  D ) r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) ) )
5954, 58syl5ibrcom 157 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( B  =  ( y
( ball `  D )
r )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
60593expib 1230 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  ( (
y  e.  X  /\  r  e.  RR* )  -> 
( B  =  ( y ( ball `  D
) r )  -> 
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) ) )
6160rexlimdvv 2655 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( E. y  e.  X  E. r  e.  RR*  B  =  ( y ( ball `  D ) r )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
) ) )
621, 61sylbid 150 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( B  e.  ran  ( ball `  D
)  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
) ) )
63623imp 1217 1  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  ran  ( ball `  D
)  /\  P  e.  B )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509    C_ wss 3197   class class class wbr 4082   ran crn 4719   ` cfv 5317  (class class class)co 6000   RRcr 7994   RR*cxr 8176    < clt 8177    <_ cle 8178    - cmin 8313   QQcq 9810   RR+crp 9845  PsMetcpsmet 14493   ballcbl 14496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-psmet 14501  df-bl 14504
This theorem is referenced by:  blssexps  15097
  Copyright terms: Public domain W3C validator