ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2stropg Unicode version

Theorem 2stropg 12100
Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
2str.e  |-  E  = Slot 
N
2str.l  |-  1  <  N
2str.n  |-  N  e.  NN
Assertion
Ref Expression
2stropg  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( E `  G ) )

Proof of Theorem 2stropg
StepHypRef Expression
1 2str.e . . 3  |-  E  = Slot 
N
2 2str.n . . 3  |-  N  e.  NN
31, 2ndxslid 12023 . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
4 2str.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
5 basendxnn 12053 . . . . . 6  |-  ( Base `  ndx )  e.  NN
65a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  e.  NN )
7 simpl 108 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  e.  V )
8 opexg 4158 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
96, 7, 8syl2anc 409 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e. 
_V )
101, 2ndxarg 12021 . . . . . . 7  |-  ( E `
 ndx )  =  N
1110, 2eqeltri 2213 . . . . . 6  |-  ( E `
 ndx )  e.  NN
1211a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( E `  ndx )  e.  NN )
13 simpr 109 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  e.  W )
14 opexg 4158 . . . . 5  |-  ( ( ( E `  ndx )  e.  NN  /\  .+  e.  W )  ->  <. ( E `  ndx ) , 
.+  >.  e.  _V )
1512, 13, 14syl2anc 409 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  _V )
16 prexg 4141 . . . 4  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( E `
 ndx ) , 
.+  >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
179, 15, 16syl2anc 409 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
184, 17eqeltrid 2227 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  G  e.  _V )
195nnrei 8753 . . . . . 6  |-  ( Base `  ndx )  e.  RR
20 2str.l . . . . . . 7  |-  1  <  N
21 basendx 12052 . . . . . . 7  |-  ( Base `  ndx )  =  1
2220, 21, 103brtr4i 3966 . . . . . 6  |-  ( Base `  ndx )  <  ( E `  ndx )
2319, 22ltneii 7884 . . . . 5  |-  ( Base `  ndx )  =/=  ( E `  ndx )
2423a1i 9 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  =/=  ( E `  ndx ) )
25 funprg 5181 . . . 4  |-  ( ( ( ( Base `  ndx )  e.  NN  /\  ( E `  ndx )  e.  NN )  /\  ( B  e.  V  /\  .+  e.  W )  /\  ( Base `  ndx )  =/=  ( E `  ndx ) )  ->  Fun  {
<. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
266, 12, 7, 13, 24, 25syl221anc 1228 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
274funeqi 5152 . . 3  |-  ( Fun 
G  <->  Fun  { <. ( Base `  ndx ) ,  B >. ,  <. ( E `  ndx ) , 
.+  >. } )
2826, 27sylibr 133 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  G )
29 prid2g 3636 . . . 4  |-  ( <.
( E `  ndx ) ,  .+  >.  e.  _V  -> 
<. ( E `  ndx ) ,  .+  >.  e.  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
3015, 29syl 14 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
3130, 4eleqtrrdi 2234 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  G
)
323, 18, 28, 31strslfvd 12039 1  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( E `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    =/= wne 2309   _Vcvv 2689   {cpr 3533   <.cop 3535   class class class wbr 3937   Fun wfun 5125   ` cfv 5131   1c1 7645    < clt 7824   NNcn 8744   ndxcnx 11995  Slot cslot 11997   Basecbs 11998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741  ax-pre-ltirr 7756
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fv 5139  df-pnf 7826  df-mnf 7827  df-ltxr 7829  df-inn 8745  df-ndx 12001  df-slot 12002  df-base 12004
This theorem is referenced by:  grpplusgg  12107  eltpsg  12246
  Copyright terms: Public domain W3C validator