Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2stropg | Unicode version |
Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
Ref | Expression |
---|---|
2str.g | |
2str.e | Slot |
2str.l | |
2str.n |
Ref | Expression |
---|---|
2stropg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2str.e | . . 3 Slot | |
2 | 2str.n | . . 3 | |
3 | 1, 2 | ndxslid 12419 | . 2 Slot |
4 | 2str.g | . . 3 | |
5 | basendxnn 12449 | . . . . . 6 | |
6 | 5 | a1i 9 | . . . . 5 |
7 | simpl 108 | . . . . 5 | |
8 | opexg 4206 | . . . . 5 | |
9 | 6, 7, 8 | syl2anc 409 | . . . 4 |
10 | 1, 2 | ndxarg 12417 | . . . . . . 7 |
11 | 10, 2 | eqeltri 2239 | . . . . . 6 |
12 | 11 | a1i 9 | . . . . 5 |
13 | simpr 109 | . . . . 5 | |
14 | opexg 4206 | . . . . 5 | |
15 | 12, 13, 14 | syl2anc 409 | . . . 4 |
16 | prexg 4189 | . . . 4 | |
17 | 9, 15, 16 | syl2anc 409 | . . 3 |
18 | 4, 17 | eqeltrid 2253 | . 2 |
19 | 5 | nnrei 8866 | . . . . . 6 |
20 | 2str.l | . . . . . . 7 | |
21 | basendx 12448 | . . . . . . 7 | |
22 | 20, 21, 10 | 3brtr4i 4012 | . . . . . 6 |
23 | 19, 22 | ltneii 7995 | . . . . 5 |
24 | 23 | a1i 9 | . . . 4 |
25 | funprg 5238 | . . . 4 | |
26 | 6, 12, 7, 13, 24, 25 | syl221anc 1239 | . . 3 |
27 | 4 | funeqi 5209 | . . 3 |
28 | 26, 27 | sylibr 133 | . 2 |
29 | prid2g 3681 | . . . 4 | |
30 | 15, 29 | syl 14 | . . 3 |
31 | 30, 4 | eleqtrrdi 2260 | . 2 |
32 | 3, 18, 28, 31 | strslfvd 12435 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wne 2336 cvv 2726 cpr 3577 cop 3579 class class class wbr 3982 wfun 5182 cfv 5188 c1 7754 clt 7933 cn 8857 cnx 12391 Slot cslot 12393 cbs 12394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-inn 8858 df-ndx 12397 df-slot 12398 df-base 12400 |
This theorem is referenced by: grpplusgg 12504 eltpsg 12678 |
Copyright terms: Public domain | W3C validator |