| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2stropg | Unicode version | ||
| Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) |
| Ref | Expression |
|---|---|
| 2str.g |
|
| 2str.e |
|
| 2str.l |
|
| 2str.n |
|
| Ref | Expression |
|---|---|
| 2stropg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2str.e |
. . 3
| |
| 2 | 2str.n |
. . 3
| |
| 3 | 1, 2 | ndxslid 13057 |
. 2
|
| 4 | 2str.g |
. . 3
| |
| 5 | basendxnn 13088 |
. . . . . 6
| |
| 6 | 5 | a1i 9 |
. . . . 5
|
| 7 | simpl 109 |
. . . . 5
| |
| 8 | opexg 4314 |
. . . . 5
| |
| 9 | 6, 7, 8 | syl2anc 411 |
. . . 4
|
| 10 | 1, 2 | ndxarg 13055 |
. . . . . . 7
|
| 11 | 10, 2 | eqeltri 2302 |
. . . . . 6
|
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | simpr 110 |
. . . . 5
| |
| 14 | opexg 4314 |
. . . . 5
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . 4
|
| 16 | prexg 4295 |
. . . 4
| |
| 17 | 9, 15, 16 | syl2anc 411 |
. . 3
|
| 18 | 4, 17 | eqeltrid 2316 |
. 2
|
| 19 | 5 | nnrei 9119 |
. . . . . 6
|
| 20 | 2str.l |
. . . . . . 7
| |
| 21 | basendx 13087 |
. . . . . . 7
| |
| 22 | 20, 21, 10 | 3brtr4i 4113 |
. . . . . 6
|
| 23 | 19, 22 | ltneii 8243 |
. . . . 5
|
| 24 | 23 | a1i 9 |
. . . 4
|
| 25 | funprg 5371 |
. . . 4
| |
| 26 | 6, 12, 7, 13, 24, 25 | syl221anc 1282 |
. . 3
|
| 27 | 4 | funeqi 5339 |
. . 3
|
| 28 | 26, 27 | sylibr 134 |
. 2
|
| 29 | prid2g 3771 |
. . . 4
| |
| 30 | 15, 29 | syl 14 |
. . 3
|
| 31 | 30, 4 | eleqtrrdi 2323 |
. 2
|
| 32 | 3, 18, 28, 31 | strslfvd 13074 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-pre-ltirr 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 |
| This theorem is referenced by: grpplusgg 13161 eltpsg 14714 |
| Copyright terms: Public domain | W3C validator |