ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2stropg Unicode version

Theorem 2stropg 12823
Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
Hypotheses
Ref Expression
2str.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
2str.e  |-  E  = Slot 
N
2str.l  |-  1  <  N
2str.n  |-  N  e.  NN
Assertion
Ref Expression
2stropg  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( E `  G ) )

Proof of Theorem 2stropg
StepHypRef Expression
1 2str.e . . 3  |-  E  = Slot 
N
2 2str.n . . 3  |-  N  e.  NN
31, 2ndxslid 12728 . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
4 2str.g . . 3  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }
5 basendxnn 12759 . . . . . 6  |-  ( Base `  ndx )  e.  NN
65a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  e.  NN )
7 simpl 109 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  B  e.  V )
8 opexg 4262 . . . . 5  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
96, 7, 8syl2anc 411 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( Base `  ndx ) ,  B >.  e. 
_V )
101, 2ndxarg 12726 . . . . . . 7  |-  ( E `
 ndx )  =  N
1110, 2eqeltri 2269 . . . . . 6  |-  ( E `
 ndx )  e.  NN
1211a1i 9 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( E `  ndx )  e.  NN )
13 simpr 110 . . . . 5  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  e.  W )
14 opexg 4262 . . . . 5  |-  ( ( ( E `  ndx )  e.  NN  /\  .+  e.  W )  ->  <. ( E `  ndx ) , 
.+  >.  e.  _V )
1512, 13, 14syl2anc 411 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  _V )
16 prexg 4245 . . . 4  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( E `
 ndx ) , 
.+  >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
179, 15, 16syl2anc 411 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. }  e.  _V )
184, 17eqeltrid 2283 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  G  e.  _V )
195nnrei 9016 . . . . . 6  |-  ( Base `  ndx )  e.  RR
20 2str.l . . . . . . 7  |-  1  <  N
21 basendx 12758 . . . . . . 7  |-  ( Base `  ndx )  =  1
2220, 21, 103brtr4i 4064 . . . . . 6  |-  ( Base `  ndx )  <  ( E `  ndx )
2319, 22ltneii 8140 . . . . 5  |-  ( Base `  ndx )  =/=  ( E `  ndx )
2423a1i 9 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W )  -> 
( Base `  ndx )  =/=  ( E `  ndx ) )
25 funprg 5309 . . . 4  |-  ( ( ( ( Base `  ndx )  e.  NN  /\  ( E `  ndx )  e.  NN )  /\  ( B  e.  V  /\  .+  e.  W )  /\  ( Base `  ndx )  =/=  ( E `  ndx ) )  ->  Fun  {
<. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
266, 12, 7, 13, 24, 25syl221anc 1260 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
274funeqi 5280 . . 3  |-  ( Fun 
G  <->  Fun  { <. ( Base `  ndx ) ,  B >. ,  <. ( E `  ndx ) , 
.+  >. } )
2826, 27sylibr 134 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  Fun  G )
29 prid2g 3728 . . . 4  |-  ( <.
( E `  ndx ) ,  .+  >.  e.  _V  -> 
<. ( E `  ndx ) ,  .+  >.  e.  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
3015, 29syl 14 . . 3  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  { <. ( Base `  ndx ) ,  B >. , 
<. ( E `  ndx ) ,  .+  >. } )
3130, 4eleqtrrdi 2290 . 2  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  <. ( E `  ndx ) ,  .+  >.  e.  G
)
323, 18, 28, 31strslfvd 12745 1  |-  ( ( B  e.  V  /\  .+  e.  W )  ->  .+  =  ( E `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   _Vcvv 2763   {cpr 3624   <.cop 3626   class class class wbr 4034   Fun wfun 5253   ` cfv 5259   1c1 7897    < clt 8078   NNcn 9007   ndxcnx 12700  Slot cslot 12702   Basecbs 12703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-pre-ltirr 8008
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709
This theorem is referenced by:  grpplusgg  12830  eltpsg  14360
  Copyright terms: Public domain W3C validator