ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpnq0nq Unicode version

Theorem nqpnq0nq 7415
Description: A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
nqpnq0nq  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  ( A +Q0  B )  e.  Q. )

Proof of Theorem nqpnq0nq
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7340 . . . 4  |-  ( A  e.  Q.  ->  E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  ) )
2 nq0nn 7404 . . . 4  |-  ( B  e. Q0  ->  E. z E. w
( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )
31, 2anim12i 336 . . 3  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y >. ]  ~Q  )  /\  E. z E. w ( ( z  e.  om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  )
) )
4 ee4anv 1927 . . 3  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  <->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y >. ]  ~Q  )  /\  E. z E. w ( ( z  e.  om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  )
) )
53, 4sylibr 133 . 2  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  E. x E. y E. z E. w ( ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y >. ]  ~Q  )  /\  (
( z  e.  om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  )
) )
6 oveq12 5862 . . . . . . 7  |-  ( ( A  =  [ <. x ,  y >. ]  ~Q  /\  B  =  [ <. z ,  w >. ] ~Q0  )  ->  ( A +Q0  B )  =  ( [ <. x ,  y >. ]  ~Q +Q0  [ <. z ,  w >. ] ~Q0  ) )
76ad2ant2l 505 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  =  ( [
<. x ,  y >. ]  ~Q +Q0  [
<. z ,  w >. ] ~Q0  )
)
8 nqnq0pi 7400 . . . . . . . . . 10  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  [ <. x ,  y
>. ] ~Q0  =  [ <. x ,  y
>. ]  ~Q  )
98oveq1d 5868 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [ <. x ,  y >. ]  ~Q +Q0  [ <. z ,  w >. ] ~Q0  ) )
109adantr 274 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [
<. x ,  y >. ]  ~Q +Q0  [
<. z ,  w >. ] ~Q0  )
)
11 pinn 7271 . . . . . . . . 9  |-  ( x  e.  N.  ->  x  e.  om )
12 addnnnq0 7411 . . . . . . . . 9  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
1311, 12sylanl1 400 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
1410, 13eqtr3d 2205 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q +Q0  [
<. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ] ~Q0  )
1514ad2ant2r 506 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( [ <. x ,  y
>. ]  ~Q +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
167, 15eqtrd 2203 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
17 pinn 7271 . . . . . . . . . . . . . 14  |-  ( y  e.  N.  ->  y  e.  om )
18 nnmcl 6460 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  .o  z
)  e.  om )
1917, 18sylan 281 . . . . . . . . . . . . 13  |-  ( ( y  e.  N.  /\  z  e.  om )  ->  ( y  .o  z
)  e.  om )
2019ad2ant2lr 507 . . . . . . . . . . . 12  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( y  .o  z )  e.  om )
21 mulpiord 7279 . . . . . . . . . . . . . 14  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  =  ( x  .o  w ) )
22 mulclpi 7290 . . . . . . . . . . . . . 14  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
2321, 22eqeltrrd 2248 . . . . . . . . . . . . 13  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .o  w
)  e.  N. )
2423ad2ant2rl 508 . . . . . . . . . . . 12  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( x  .o  w )  e.  N. )
25 pinn 7271 . . . . . . . . . . . . 13  |-  ( ( x  .o  w )  e.  N.  ->  (
x  .o  w )  e.  om )
26 nnacom 6463 . . . . . . . . . . . . 13  |-  ( ( ( y  .o  z
)  e.  om  /\  ( x  .o  w
)  e.  om )  ->  ( ( y  .o  z )  +o  (
x  .o  w ) )  =  ( ( x  .o  w )  +o  ( y  .o  z ) ) )
2725, 26sylan2 284 . . . . . . . . . . . 12  |-  ( ( ( y  .o  z
)  e.  om  /\  ( x  .o  w
)  e.  N. )  ->  ( ( y  .o  z )  +o  (
x  .o  w ) )  =  ( ( x  .o  w )  +o  ( y  .o  z ) ) )
2820, 24, 27syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
y  .o  z )  +o  ( x  .o  w ) )  =  ( ( x  .o  w )  +o  (
y  .o  z ) ) )
29 nnppipi 7305 . . . . . . . . . . . 12  |-  ( ( ( y  .o  z
)  e.  om  /\  ( x  .o  w
)  e.  N. )  ->  ( ( y  .o  z )  +o  (
x  .o  w ) )  e.  N. )
3020, 24, 29syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
y  .o  z )  +o  ( x  .o  w ) )  e. 
N. )
3128, 30eqeltrrd 2248 . . . . . . . . . 10  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
x  .o  w )  +o  ( y  .o  z ) )  e. 
N. )
32 mulpiord 7279 . . . . . . . . . . . 12  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( y  .o  w ) )
33 mulclpi 7290 . . . . . . . . . . . 12  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
3432, 33eqeltrrd 2248 . . . . . . . . . . 11  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .o  w
)  e.  N. )
3534ad2ant2l 505 . . . . . . . . . 10  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( y  .o  w )  e.  N. )
36 opelxpi 4643 . . . . . . . . . 10  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  N.  /\  ( y  .o  w
)  e.  N. )  -> 
<. ( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >.  e.  ( N.  X.  N. ) )
3731, 35, 36syl2anc 409 . . . . . . . . 9  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  <. ( ( x  .o  w )  +o  ( y  .o  z ) ) ,  ( y  .o  w
) >.  e.  ( N. 
X.  N. ) )
38 enqex 7322 . . . . . . . . . 10  |-  ~Q  e.  _V
3938ecelqsi 6567 . . . . . . . . 9  |-  ( <.
( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >.  e.  ( N.  X.  N. )  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
4037, 39syl 14 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
41 df-nqqs 7310 . . . . . . . 8  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
4240, 41eleqtrrdi 2264 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  Q. )
43 nqnq0pi 7400 . . . . . . . . 9  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  N.  /\  ( y  .o  w
)  e.  N. )  ->  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ] ~Q0  =  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ]  ~Q  )
4443eleq1d 2239 . . . . . . . 8  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  N.  /\  ( y  .o  w
)  e.  N. )  ->  ( [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  Q.  <->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  Q. ) )
4531, 35, 44syl2anc 409 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. ( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e. 
Q. 
<->  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ]  ~Q  e.  Q. ) )
4642, 45mpbird 166 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  Q. )
4746ad2ant2r 506 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  Q. )
4816, 47eqeltrd 2247 . . . 4  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  e.  Q. )
4948exlimivv 1889 . . 3  |-  ( E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  e.  Q. )
5049exlimivv 1889 . 2  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  e.  Q. )
515, 50syl 14 1  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  ( A +Q0  B )  e.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   <.cop 3586   omcom 4574    X. cxp 4609  (class class class)co 5853    +o coa 6392    .o comu 6393   [cec 6511   /.cqs 6512   N.cnpi 7234    .N cmi 7236    ~Q ceq 7241   Q.cnq 7242   ~Q0 ceq0 7248  Q0cnq0 7249   +Q0 cplq0 7251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-enq 7309  df-nqqs 7310  df-enq0 7386  df-nq0 7387  df-plq0 7389
This theorem is referenced by:  prarloclemcalc  7464
  Copyright terms: Public domain W3C validator