Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nqpnq0nq | Unicode version |
Description: A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.) |
Ref | Expression |
---|---|
nqpnq0nq | Q0 +Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqpi 7281 | . . . 4 | |
2 | nq0nn 7345 | . . . 4 Q0 ~Q0 | |
3 | 1, 2 | anim12i 336 | . . 3 Q0 ~Q0 |
4 | ee4anv 1914 | . . 3 ~Q0 ~Q0 | |
5 | 3, 4 | sylibr 133 | . 2 Q0 ~Q0 |
6 | oveq12 5827 | . . . . . . 7 ~Q0 +Q0 +Q0 ~Q0 | |
7 | 6 | ad2ant2l 500 | . . . . . 6 ~Q0 +Q0 +Q0 ~Q0 |
8 | nqnq0pi 7341 | . . . . . . . . . 10 ~Q0 | |
9 | 8 | oveq1d 5833 | . . . . . . . . 9 ~Q0 +Q0 ~Q0 +Q0 ~Q0 |
10 | 9 | adantr 274 | . . . . . . . 8 ~Q0 +Q0 ~Q0 +Q0 ~Q0 |
11 | pinn 7212 | . . . . . . . . 9 | |
12 | addnnnq0 7352 | . . . . . . . . 9 ~Q0 +Q0 ~Q0 ~Q0 | |
13 | 11, 12 | sylanl1 400 | . . . . . . . 8 ~Q0 +Q0 ~Q0 ~Q0 |
14 | 10, 13 | eqtr3d 2192 | . . . . . . 7 +Q0 ~Q0 ~Q0 |
15 | 14 | ad2ant2r 501 | . . . . . 6 ~Q0 +Q0 ~Q0 ~Q0 |
16 | 7, 15 | eqtrd 2190 | . . . . 5 ~Q0 +Q0 ~Q0 |
17 | pinn 7212 | . . . . . . . . . . . . . 14 | |
18 | nnmcl 6421 | . . . . . . . . . . . . . 14 | |
19 | 17, 18 | sylan 281 | . . . . . . . . . . . . 13 |
20 | 19 | ad2ant2lr 502 | . . . . . . . . . . . 12 |
21 | mulpiord 7220 | . . . . . . . . . . . . . 14 | |
22 | mulclpi 7231 | . . . . . . . . . . . . . 14 | |
23 | 21, 22 | eqeltrrd 2235 | . . . . . . . . . . . . 13 |
24 | 23 | ad2ant2rl 503 | . . . . . . . . . . . 12 |
25 | pinn 7212 | . . . . . . . . . . . . 13 | |
26 | nnacom 6424 | . . . . . . . . . . . . 13 | |
27 | 25, 26 | sylan2 284 | . . . . . . . . . . . 12 |
28 | 20, 24, 27 | syl2anc 409 | . . . . . . . . . . 11 |
29 | nnppipi 7246 | . . . . . . . . . . . 12 | |
30 | 20, 24, 29 | syl2anc 409 | . . . . . . . . . . 11 |
31 | 28, 30 | eqeltrrd 2235 | . . . . . . . . . 10 |
32 | mulpiord 7220 | . . . . . . . . . . . 12 | |
33 | mulclpi 7231 | . . . . . . . . . . . 12 | |
34 | 32, 33 | eqeltrrd 2235 | . . . . . . . . . . 11 |
35 | 34 | ad2ant2l 500 | . . . . . . . . . 10 |
36 | opelxpi 4615 | . . . . . . . . . 10 | |
37 | 31, 35, 36 | syl2anc 409 | . . . . . . . . 9 |
38 | enqex 7263 | . . . . . . . . . 10 | |
39 | 38 | ecelqsi 6527 | . . . . . . . . 9 |
40 | 37, 39 | syl 14 | . . . . . . . 8 |
41 | df-nqqs 7251 | . . . . . . . 8 | |
42 | 40, 41 | eleqtrrdi 2251 | . . . . . . 7 |
43 | nqnq0pi 7341 | . . . . . . . . 9 ~Q0 | |
44 | 43 | eleq1d 2226 | . . . . . . . 8 ~Q0 |
45 | 31, 35, 44 | syl2anc 409 | . . . . . . 7 ~Q0 |
46 | 42, 45 | mpbird 166 | . . . . . 6 ~Q0 |
47 | 46 | ad2ant2r 501 | . . . . 5 ~Q0 ~Q0 |
48 | 16, 47 | eqeltrd 2234 | . . . 4 ~Q0 +Q0 |
49 | 48 | exlimivv 1876 | . . 3 ~Q0 +Q0 |
50 | 49 | exlimivv 1876 | . 2 ~Q0 +Q0 |
51 | 5, 50 | syl 14 | 1 Q0 +Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 cop 3563 com 4547 cxp 4581 (class class class)co 5818 coa 6354 comu 6355 cec 6471 cqs 6472 cnpi 7175 cmi 7177 ceq 7182 cnq 7183 ~Q0 ceq0 7189 Q0cnq0 7190 +Q0 cplq0 7192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-mi 7209 df-enq 7250 df-nqqs 7251 df-enq0 7327 df-nq0 7328 df-plq0 7330 |
This theorem is referenced by: prarloclemcalc 7405 |
Copyright terms: Public domain | W3C validator |