ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpnq0nq Unicode version

Theorem nqpnq0nq 7596
Description: A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
nqpnq0nq  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  ( A +Q0  B )  e.  Q. )

Proof of Theorem nqpnq0nq
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7521 . . . 4  |-  ( A  e.  Q.  ->  E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  ) )
2 nq0nn 7585 . . . 4  |-  ( B  e. Q0  ->  E. z E. w
( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y >. ]  ~Q  )  /\  E. z E. w ( ( z  e.  om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  )
) )
4 ee4anv 1963 . . 3  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  <->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y >. ]  ~Q  )  /\  E. z E. w ( ( z  e.  om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  )
) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  E. x E. y E. z E. w ( ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y >. ]  ~Q  )  /\  (
( z  e.  om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  )
) )
6 oveq12 5971 . . . . . . 7  |-  ( ( A  =  [ <. x ,  y >. ]  ~Q  /\  B  =  [ <. z ,  w >. ] ~Q0  )  ->  ( A +Q0  B )  =  ( [ <. x ,  y >. ]  ~Q +Q0  [ <. z ,  w >. ] ~Q0  ) )
76ad2ant2l 508 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  =  ( [
<. x ,  y >. ]  ~Q +Q0  [
<. z ,  w >. ] ~Q0  )
)
8 nqnq0pi 7581 . . . . . . . . . 10  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  [ <. x ,  y
>. ] ~Q0  =  [ <. x ,  y
>. ]  ~Q  )
98oveq1d 5977 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [ <. x ,  y >. ]  ~Q +Q0  [ <. z ,  w >. ] ~Q0  ) )
109adantr 276 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [
<. x ,  y >. ]  ~Q +Q0  [
<. z ,  w >. ] ~Q0  )
)
11 pinn 7452 . . . . . . . . 9  |-  ( x  e.  N.  ->  x  e.  om )
12 addnnnq0 7592 . . . . . . . . 9  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
1311, 12sylanl1 402 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
1410, 13eqtr3d 2241 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q +Q0  [
<. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ] ~Q0  )
1514ad2ant2r 509 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( [ <. x ,  y
>. ]  ~Q +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
167, 15eqtrd 2239 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
17 pinn 7452 . . . . . . . . . . . . . 14  |-  ( y  e.  N.  ->  y  e.  om )
18 nnmcl 6585 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  .o  z
)  e.  om )
1917, 18sylan 283 . . . . . . . . . . . . 13  |-  ( ( y  e.  N.  /\  z  e.  om )  ->  ( y  .o  z
)  e.  om )
2019ad2ant2lr 510 . . . . . . . . . . . 12  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( y  .o  z )  e.  om )
21 mulpiord 7460 . . . . . . . . . . . . . 14  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  =  ( x  .o  w ) )
22 mulclpi 7471 . . . . . . . . . . . . . 14  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
2321, 22eqeltrrd 2284 . . . . . . . . . . . . 13  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .o  w
)  e.  N. )
2423ad2ant2rl 511 . . . . . . . . . . . 12  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( x  .o  w )  e.  N. )
25 pinn 7452 . . . . . . . . . . . . 13  |-  ( ( x  .o  w )  e.  N.  ->  (
x  .o  w )  e.  om )
26 nnacom 6588 . . . . . . . . . . . . 13  |-  ( ( ( y  .o  z
)  e.  om  /\  ( x  .o  w
)  e.  om )  ->  ( ( y  .o  z )  +o  (
x  .o  w ) )  =  ( ( x  .o  w )  +o  ( y  .o  z ) ) )
2725, 26sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( y  .o  z
)  e.  om  /\  ( x  .o  w
)  e.  N. )  ->  ( ( y  .o  z )  +o  (
x  .o  w ) )  =  ( ( x  .o  w )  +o  ( y  .o  z ) ) )
2820, 24, 27syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
y  .o  z )  +o  ( x  .o  w ) )  =  ( ( x  .o  w )  +o  (
y  .o  z ) ) )
29 nnppipi 7486 . . . . . . . . . . . 12  |-  ( ( ( y  .o  z
)  e.  om  /\  ( x  .o  w
)  e.  N. )  ->  ( ( y  .o  z )  +o  (
x  .o  w ) )  e.  N. )
3020, 24, 29syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
y  .o  z )  +o  ( x  .o  w ) )  e. 
N. )
3128, 30eqeltrrd 2284 . . . . . . . . . 10  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
x  .o  w )  +o  ( y  .o  z ) )  e. 
N. )
32 mulpiord 7460 . . . . . . . . . . . 12  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( y  .o  w ) )
33 mulclpi 7471 . . . . . . . . . . . 12  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
3432, 33eqeltrrd 2284 . . . . . . . . . . 11  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .o  w
)  e.  N. )
3534ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( y  .o  w )  e.  N. )
36 opelxpi 4720 . . . . . . . . . 10  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  N.  /\  ( y  .o  w
)  e.  N. )  -> 
<. ( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >.  e.  ( N.  X.  N. ) )
3731, 35, 36syl2anc 411 . . . . . . . . 9  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  <. ( ( x  .o  w )  +o  ( y  .o  z ) ) ,  ( y  .o  w
) >.  e.  ( N. 
X.  N. ) )
38 enqex 7503 . . . . . . . . . 10  |-  ~Q  e.  _V
3938ecelqsi 6694 . . . . . . . . 9  |-  ( <.
( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >.  e.  ( N.  X.  N. )  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
4037, 39syl 14 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
41 df-nqqs 7491 . . . . . . . 8  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
4240, 41eleqtrrdi 2300 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  Q. )
43 nqnq0pi 7581 . . . . . . . . 9  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  N.  /\  ( y  .o  w
)  e.  N. )  ->  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ] ~Q0  =  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ]  ~Q  )
4443eleq1d 2275 . . . . . . . 8  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  N.  /\  ( y  .o  w
)  e.  N. )  ->  ( [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  Q.  <->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  Q. ) )
4531, 35, 44syl2anc 411 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. ( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e. 
Q. 
<->  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ]  ~Q  e.  Q. ) )
4642, 45mpbird 167 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  Q. )
4746ad2ant2r 509 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  Q. )
4816, 47eqeltrd 2283 . . . 4  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  e.  Q. )
4948exlimivv 1921 . . 3  |-  ( E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  e.  Q. )
5049exlimivv 1921 . 2  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  e.  Q. )
515, 50syl 14 1  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  ( A +Q0  B )  e.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   <.cop 3641   omcom 4651    X. cxp 4686  (class class class)co 5962    +o coa 6517    .o comu 6518   [cec 6636   /.cqs 6637   N.cnpi 7415    .N cmi 7417    ~Q ceq 7422   Q.cnq 7423   ~Q0 ceq0 7429  Q0cnq0 7430   +Q0 cplq0 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-oadd 6524  df-omul 6525  df-er 6638  df-ec 6640  df-qs 6644  df-ni 7447  df-mi 7449  df-enq 7490  df-nqqs 7491  df-enq0 7567  df-nq0 7568  df-plq0 7570
This theorem is referenced by:  prarloclemcalc  7645
  Copyright terms: Public domain W3C validator