ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpnq0nq Unicode version

Theorem nqpnq0nq 7443
Description: A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
nqpnq0nq  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  ( A +Q0  B )  e.  Q. )

Proof of Theorem nqpnq0nq
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7368 . . . 4  |-  ( A  e.  Q.  ->  E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  ) )
2 nq0nn 7432 . . . 4  |-  ( B  e. Q0  ->  E. z E. w
( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y >. ]  ~Q  )  /\  E. z E. w ( ( z  e.  om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  )
) )
4 ee4anv 1934 . . 3  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  <->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y >. ]  ~Q  )  /\  E. z E. w ( ( z  e.  om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  )
) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  E. x E. y E. z E. w ( ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y >. ]  ~Q  )  /\  (
( z  e.  om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  )
) )
6 oveq12 5878 . . . . . . 7  |-  ( ( A  =  [ <. x ,  y >. ]  ~Q  /\  B  =  [ <. z ,  w >. ] ~Q0  )  ->  ( A +Q0  B )  =  ( [ <. x ,  y >. ]  ~Q +Q0  [ <. z ,  w >. ] ~Q0  ) )
76ad2ant2l 508 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  =  ( [
<. x ,  y >. ]  ~Q +Q0  [
<. z ,  w >. ] ~Q0  )
)
8 nqnq0pi 7428 . . . . . . . . . 10  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  [ <. x ,  y
>. ] ~Q0  =  [ <. x ,  y
>. ]  ~Q  )
98oveq1d 5884 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [ <. x ,  y >. ]  ~Q +Q0  [ <. z ,  w >. ] ~Q0  ) )
109adantr 276 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [
<. x ,  y >. ]  ~Q +Q0  [
<. z ,  w >. ] ~Q0  )
)
11 pinn 7299 . . . . . . . . 9  |-  ( x  e.  N.  ->  x  e.  om )
12 addnnnq0 7439 . . . . . . . . 9  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
1311, 12sylanl1 402 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
1410, 13eqtr3d 2212 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q +Q0  [
<. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ] ~Q0  )
1514ad2ant2r 509 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( [ <. x ,  y
>. ]  ~Q +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
167, 15eqtrd 2210 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
17 pinn 7299 . . . . . . . . . . . . . 14  |-  ( y  e.  N.  ->  y  e.  om )
18 nnmcl 6476 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  .o  z
)  e.  om )
1917, 18sylan 283 . . . . . . . . . . . . 13  |-  ( ( y  e.  N.  /\  z  e.  om )  ->  ( y  .o  z
)  e.  om )
2019ad2ant2lr 510 . . . . . . . . . . . 12  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( y  .o  z )  e.  om )
21 mulpiord 7307 . . . . . . . . . . . . . 14  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  =  ( x  .o  w ) )
22 mulclpi 7318 . . . . . . . . . . . . . 14  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
2321, 22eqeltrrd 2255 . . . . . . . . . . . . 13  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .o  w
)  e.  N. )
2423ad2ant2rl 511 . . . . . . . . . . . 12  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( x  .o  w )  e.  N. )
25 pinn 7299 . . . . . . . . . . . . 13  |-  ( ( x  .o  w )  e.  N.  ->  (
x  .o  w )  e.  om )
26 nnacom 6479 . . . . . . . . . . . . 13  |-  ( ( ( y  .o  z
)  e.  om  /\  ( x  .o  w
)  e.  om )  ->  ( ( y  .o  z )  +o  (
x  .o  w ) )  =  ( ( x  .o  w )  +o  ( y  .o  z ) ) )
2725, 26sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( y  .o  z
)  e.  om  /\  ( x  .o  w
)  e.  N. )  ->  ( ( y  .o  z )  +o  (
x  .o  w ) )  =  ( ( x  .o  w )  +o  ( y  .o  z ) ) )
2820, 24, 27syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
y  .o  z )  +o  ( x  .o  w ) )  =  ( ( x  .o  w )  +o  (
y  .o  z ) ) )
29 nnppipi 7333 . . . . . . . . . . . 12  |-  ( ( ( y  .o  z
)  e.  om  /\  ( x  .o  w
)  e.  N. )  ->  ( ( y  .o  z )  +o  (
x  .o  w ) )  e.  N. )
3020, 24, 29syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
y  .o  z )  +o  ( x  .o  w ) )  e. 
N. )
3128, 30eqeltrrd 2255 . . . . . . . . . 10  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
x  .o  w )  +o  ( y  .o  z ) )  e. 
N. )
32 mulpiord 7307 . . . . . . . . . . . 12  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( y  .o  w ) )
33 mulclpi 7318 . . . . . . . . . . . 12  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
3432, 33eqeltrrd 2255 . . . . . . . . . . 11  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .o  w
)  e.  N. )
3534ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( y  .o  w )  e.  N. )
36 opelxpi 4655 . . . . . . . . . 10  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  N.  /\  ( y  .o  w
)  e.  N. )  -> 
<. ( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >.  e.  ( N.  X.  N. ) )
3731, 35, 36syl2anc 411 . . . . . . . . 9  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  <. ( ( x  .o  w )  +o  ( y  .o  z ) ) ,  ( y  .o  w
) >.  e.  ( N. 
X.  N. ) )
38 enqex 7350 . . . . . . . . . 10  |-  ~Q  e.  _V
3938ecelqsi 6583 . . . . . . . . 9  |-  ( <.
( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >.  e.  ( N.  X.  N. )  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
4037, 39syl 14 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
41 df-nqqs 7338 . . . . . . . 8  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
4240, 41eleqtrrdi 2271 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  Q. )
43 nqnq0pi 7428 . . . . . . . . 9  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  N.  /\  ( y  .o  w
)  e.  N. )  ->  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ] ~Q0  =  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ]  ~Q  )
4443eleq1d 2246 . . . . . . . 8  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  N.  /\  ( y  .o  w
)  e.  N. )  ->  ( [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  Q.  <->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ]  ~Q  e.  Q. ) )
4531, 35, 44syl2anc 411 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. ( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e. 
Q. 
<->  [ <. ( ( x  .o  w )  +o  ( y  .o  z
) ) ,  ( y  .o  w )
>. ]  ~Q  e.  Q. ) )
4642, 45mpbird 167 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  Q. )
4746ad2ant2r 509 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  Q. )
4816, 47eqeltrd 2254 . . . 4  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  e.  Q. )
4948exlimivv 1896 . . 3  |-  ( E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  e.  Q. )
5049exlimivv 1896 . 2  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
om  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ] ~Q0  ) )  ->  ( A +Q0  B )  e.  Q. )
515, 50syl 14 1  |-  ( ( A  e.  Q.  /\  B  e. Q0 )  ->  ( A +Q0  B )  e.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   <.cop 3594   omcom 4586    X. cxp 4621  (class class class)co 5869    +o coa 6408    .o comu 6409   [cec 6527   /.cqs 6528   N.cnpi 7262    .N cmi 7264    ~Q ceq 7269   Q.cnq 7270   ~Q0 ceq0 7276  Q0cnq0 7277   +Q0 cplq0 7279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-mi 7296  df-enq 7337  df-nqqs 7338  df-enq0 7414  df-nq0 7415  df-plq0 7417
This theorem is referenced by:  prarloclemcalc  7492
  Copyright terms: Public domain W3C validator