ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantllr Unicode version

Theorem adantllr 481
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantl2.1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
adantllr  |-  ( ( ( ( ph  /\  ta )  /\  ps )  /\  ch )  ->  th )

Proof of Theorem adantllr
StepHypRef Expression
1 simpl 109 . 2  |-  ( (
ph  /\  ta )  ->  ph )
2 adantl2.1 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
31, 2sylanl1 402 1  |-  ( ( ( ( ph  /\  ta )  /\  ps )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  ad4ant13  513  ad4ant134  1219  ad5ant145  1246  r19.29an  2636  diffifi  6952  fimax2gtrilemstep  6958  cnegexlem3  8198  cnegex  8199  lemul12b  8882  climshftlemg  11448  prodeq2  11703  fprodmodd  11787  lcmdvds  12220  pw2dvdslemn  12306  dfgrp3mlem  13173  tgcl  14243  metss  14673  mpomulcn  14745  ivthinclemlr  14816  ivthinclemur  14818
  Copyright terms: Public domain W3C validator