ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantllr Unicode version

Theorem adantllr 481
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantl2.1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
adantllr  |-  ( ( ( ( ph  /\  ta )  /\  ps )  /\  ch )  ->  th )

Proof of Theorem adantllr
StepHypRef Expression
1 simpl 109 . 2  |-  ( (
ph  /\  ta )  ->  ph )
2 adantl2.1 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
31, 2sylanl1 402 1  |-  ( ( ( ( ph  /\  ta )  /\  ps )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  ad4ant13  513  ad4ant134  1241  ad5ant145  1268  r19.29an  2673  diffifi  7052  fimax2gtrilemstep  7058  cnegexlem3  8319  cnegex  8320  lemul12b  9004  climshftlemg  11808  prodeq2  12063  fprodmodd  12147  lcmdvds  12596  pw2dvdslemn  12682  dfgrp3mlem  13626  tgcl  14732  metss  15162  mpomulcn  15234  ivthinclemlr  15305  ivthinclemur  15307  nnnninfex  16347
  Copyright terms: Public domain W3C validator