ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsn0fun Unicode version

Theorem setsn0fun 13069
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
setsn0fun.s  |-  ( ph  ->  S Struct  X )
setsn0fun.i  |-  ( ph  ->  I  e.  U )
setsn0fun.e  |-  ( ph  ->  E  e.  W )
Assertion
Ref Expression
setsn0fun  |-  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. ) 
\  { (/) } ) )

Proof of Theorem setsn0fun
StepHypRef Expression
1 setsn0fun.s . 2  |-  ( ph  ->  S Struct  X )
2 structn0fun 13045 . . 3  |-  ( S Struct  X  ->  Fun  ( S  \  { (/) } ) )
3 setsn0fun.i . . . . 5  |-  ( ph  ->  I  e.  U )
4 setsn0fun.e . . . . 5  |-  ( ph  ->  E  e.  W )
5 structex 13044 . . . . . . 7  |-  ( S Struct  X  ->  S  e.  _V )
6 setsfun0 13068 . . . . . . 7  |-  ( ( ( S  e.  _V  /\ 
Fun  ( S  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) )
75, 6sylanl1 402 . . . . . 6  |-  ( ( ( S Struct  X  /\  Fun  ( S  \  { (/)
} ) )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) )
87expcom 116 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  ->  ( ( S Struct  X  /\  Fun  ( S  \  { (/) } ) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) ) )
93, 4, 8syl2anc 411 . . . 4  |-  ( ph  ->  ( ( S Struct  X  /\  Fun  ( S  \  { (/) } ) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) ) )
109com12 30 . . 3  |-  ( ( S Struct  X  /\  Fun  ( S  \  { (/) } ) )  ->  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. ) 
\  { (/) } ) ) )
112, 10mpdan 421 . 2  |-  ( S Struct  X  ->  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) ) )
121, 11mpcom 36 1  |-  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. ) 
\  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799    \ cdif 3194   (/)c0 3491   {csn 3666   <.cop 3669   class class class wbr 4083   Fun wfun 5312  (class class class)co 6001   Struct cstr 13028   sSet csts 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-struct 13034  df-sets 13039
This theorem is referenced by:  setsvtx  15852  setsiedg  15853
  Copyright terms: Public domain W3C validator