Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsn0fun | Unicode version |
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
setsn0fun.s | Struct |
setsn0fun.i | |
setsn0fun.e |
Ref | Expression |
---|---|
setsn0fun | sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsn0fun.s | . 2 Struct | |
2 | structn0fun 12429 | . . 3 Struct | |
3 | setsn0fun.i | . . . . 5 | |
4 | setsn0fun.e | . . . . 5 | |
5 | structex 12428 | . . . . . . 7 Struct | |
6 | setsfun0 12452 | . . . . . . 7 sSet | |
7 | 5, 6 | sylanl1 400 | . . . . . 6 Struct sSet |
8 | 7 | expcom 115 | . . . . 5 Struct sSet |
9 | 3, 4, 8 | syl2anc 409 | . . . 4 Struct sSet |
10 | 9 | com12 30 | . . 3 Struct sSet |
11 | 2, 10 | mpdan 419 | . 2 Struct sSet |
12 | 1, 11 | mpcom 36 | 1 sSet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 cvv 2730 cdif 3118 c0 3414 csn 3583 cop 3586 class class class wbr 3989 wfun 5192 (class class class)co 5853 Struct cstr 12412 sSet csts 12414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-struct 12418 df-sets 12423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |