ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsn0fun Unicode version

Theorem setsn0fun 12715
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
setsn0fun.s  |-  ( ph  ->  S Struct  X )
setsn0fun.i  |-  ( ph  ->  I  e.  U )
setsn0fun.e  |-  ( ph  ->  E  e.  W )
Assertion
Ref Expression
setsn0fun  |-  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. ) 
\  { (/) } ) )

Proof of Theorem setsn0fun
StepHypRef Expression
1 setsn0fun.s . 2  |-  ( ph  ->  S Struct  X )
2 structn0fun 12691 . . 3  |-  ( S Struct  X  ->  Fun  ( S  \  { (/) } ) )
3 setsn0fun.i . . . . 5  |-  ( ph  ->  I  e.  U )
4 setsn0fun.e . . . . 5  |-  ( ph  ->  E  e.  W )
5 structex 12690 . . . . . . 7  |-  ( S Struct  X  ->  S  e.  _V )
6 setsfun0 12714 . . . . . . 7  |-  ( ( ( S  e.  _V  /\ 
Fun  ( S  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) )
75, 6sylanl1 402 . . . . . 6  |-  ( ( ( S Struct  X  /\  Fun  ( S  \  { (/)
} ) )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) )
87expcom 116 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  ->  ( ( S Struct  X  /\  Fun  ( S  \  { (/) } ) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) ) )
93, 4, 8syl2anc 411 . . . 4  |-  ( ph  ->  ( ( S Struct  X  /\  Fun  ( S  \  { (/) } ) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) ) )
109com12 30 . . 3  |-  ( ( S Struct  X  /\  Fun  ( S  \  { (/) } ) )  ->  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. ) 
\  { (/) } ) ) )
112, 10mpdan 421 . 2  |-  ( S Struct  X  ->  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) ) )
121, 11mpcom 36 1  |-  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. ) 
\  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   _Vcvv 2763    \ cdif 3154   (/)c0 3450   {csn 3622   <.cop 3625   class class class wbr 4033   Fun wfun 5252  (class class class)co 5922   Struct cstr 12674   sSet csts 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-struct 12680  df-sets 12685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator