ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsn0fun Unicode version

Theorem setsn0fun 12869
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
setsn0fun.s  |-  ( ph  ->  S Struct  X )
setsn0fun.i  |-  ( ph  ->  I  e.  U )
setsn0fun.e  |-  ( ph  ->  E  e.  W )
Assertion
Ref Expression
setsn0fun  |-  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. ) 
\  { (/) } ) )

Proof of Theorem setsn0fun
StepHypRef Expression
1 setsn0fun.s . 2  |-  ( ph  ->  S Struct  X )
2 structn0fun 12845 . . 3  |-  ( S Struct  X  ->  Fun  ( S  \  { (/) } ) )
3 setsn0fun.i . . . . 5  |-  ( ph  ->  I  e.  U )
4 setsn0fun.e . . . . 5  |-  ( ph  ->  E  e.  W )
5 structex 12844 . . . . . . 7  |-  ( S Struct  X  ->  S  e.  _V )
6 setsfun0 12868 . . . . . . 7  |-  ( ( ( S  e.  _V  /\ 
Fun  ( S  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) )
75, 6sylanl1 402 . . . . . 6  |-  ( ( ( S Struct  X  /\  Fun  ( S  \  { (/)
} ) )  /\  ( I  e.  U  /\  E  e.  W
) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) )
87expcom 116 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  ->  ( ( S Struct  X  /\  Fun  ( S  \  { (/) } ) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) ) )
93, 4, 8syl2anc 411 . . . 4  |-  ( ph  ->  ( ( S Struct  X  /\  Fun  ( S  \  { (/) } ) )  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) ) )
109com12 30 . . 3  |-  ( ( S Struct  X  /\  Fun  ( S  \  { (/) } ) )  ->  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. ) 
\  { (/) } ) ) )
112, 10mpdan 421 . 2  |-  ( S Struct  X  ->  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. )  \  { (/) } ) ) )
121, 11mpcom 36 1  |-  ( ph  ->  Fun  ( ( S sSet  <. I ,  E >. ) 
\  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   _Vcvv 2772    \ cdif 3163   (/)c0 3460   {csn 3633   <.cop 3636   class class class wbr 4044   Fun wfun 5265  (class class class)co 5944   Struct cstr 12828   sSet csts 12830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-struct 12834  df-sets 12839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator