| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addnqprl | Unicode version | ||
| Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) |
| Ref | Expression |
|---|---|
| addnqprl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7650 |
. . . . . 6
| |
| 2 | addnqprllem 7702 |
. . . . . 6
| |
| 3 | 1, 2 | sylanl1 402 |
. . . . 5
|
| 4 | 3 | adantlr 477 |
. . . 4
|
| 5 | prop 7650 |
. . . . . 6
| |
| 6 | addnqprllem 7702 |
. . . . . 6
| |
| 7 | 5, 6 | sylanl1 402 |
. . . . 5
|
| 8 | 7 | adantll 476 |
. . . 4
|
| 9 | 4, 8 | jcad 307 |
. . 3
|
| 10 | simpl 109 |
. . . 4
| |
| 11 | simpl 109 |
. . . . 5
| |
| 12 | simpl 109 |
. . . . 5
| |
| 13 | 11, 12 | anim12i 338 |
. . . 4
|
| 14 | df-iplp 7643 |
. . . . 5
| |
| 15 | addclnq 7550 |
. . . . 5
| |
| 16 | 14, 15 | genpprecll 7689 |
. . . 4
|
| 17 | 10, 13, 16 | 3syl 17 |
. . 3
|
| 18 | 9, 17 | syld 45 |
. 2
|
| 19 | simpr 110 |
. . . . 5
| |
| 20 | elprnql 7656 |
. . . . . . . . 9
| |
| 21 | 1, 20 | sylan 283 |
. . . . . . . 8
|
| 22 | 21 | ad2antrr 488 |
. . . . . . 7
|
| 23 | elprnql 7656 |
. . . . . . . . 9
| |
| 24 | 5, 23 | sylan 283 |
. . . . . . . 8
|
| 25 | 24 | ad2antlr 489 |
. . . . . . 7
|
| 26 | addclnq 7550 |
. . . . . . 7
| |
| 27 | 22, 25, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | recclnq 7567 |
. . . . . 6
| |
| 29 | 27, 28 | syl 14 |
. . . . 5
|
| 30 | mulassnqg 7559 |
. . . . 5
| |
| 31 | 19, 29, 27, 30 | syl3anc 1271 |
. . . 4
|
| 32 | mulclnq 7551 |
. . . . . 6
| |
| 33 | 19, 29, 32 | syl2anc 411 |
. . . . 5
|
| 34 | distrnqg 7562 |
. . . . 5
| |
| 35 | 33, 22, 25, 34 | syl3anc 1271 |
. . . 4
|
| 36 | mulcomnqg 7558 |
. . . . . . . 8
| |
| 37 | 29, 27, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | recidnq 7568 |
. . . . . . . 8
| |
| 39 | 27, 38 | syl 14 |
. . . . . . 7
|
| 40 | 37, 39 | eqtrd 2262 |
. . . . . 6
|
| 41 | 40 | oveq2d 6010 |
. . . . 5
|
| 42 | mulidnq 7564 |
. . . . . 6
| |
| 43 | 42 | adantl 277 |
. . . . 5
|
| 44 | 41, 43 | eqtrd 2262 |
. . . 4
|
| 45 | 31, 35, 44 | 3eqtr3d 2270 |
. . 3
|
| 46 | 45 | eleq1d 2298 |
. 2
|
| 47 | 18, 46 | sylibd 149 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-1o 6552 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-pli 7480 df-mi 7481 df-lti 7482 df-plpq 7519 df-mpq 7520 df-enq 7522 df-nqqs 7523 df-plqqs 7524 df-mqqs 7525 df-1nqqs 7526 df-rq 7527 df-ltnqqs 7528 df-inp 7641 df-iplp 7643 |
| This theorem is referenced by: addlocprlemlt 7706 addclpr 7712 |
| Copyright terms: Public domain | W3C validator |