| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addnqprl | Unicode version | ||
| Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| addnqprl | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prop 7542 | 
. . . . . 6
 | |
| 2 | addnqprllem 7594 | 
. . . . . 6
 | |
| 3 | 1, 2 | sylanl1 402 | 
. . . . 5
 | 
| 4 | 3 | adantlr 477 | 
. . . 4
 | 
| 5 | prop 7542 | 
. . . . . 6
 | |
| 6 | addnqprllem 7594 | 
. . . . . 6
 | |
| 7 | 5, 6 | sylanl1 402 | 
. . . . 5
 | 
| 8 | 7 | adantll 476 | 
. . . 4
 | 
| 9 | 4, 8 | jcad 307 | 
. . 3
 | 
| 10 | simpl 109 | 
. . . 4
 | |
| 11 | simpl 109 | 
. . . . 5
 | |
| 12 | simpl 109 | 
. . . . 5
 | |
| 13 | 11, 12 | anim12i 338 | 
. . . 4
 | 
| 14 | df-iplp 7535 | 
. . . . 5
 | |
| 15 | addclnq 7442 | 
. . . . 5
 | |
| 16 | 14, 15 | genpprecll 7581 | 
. . . 4
 | 
| 17 | 10, 13, 16 | 3syl 17 | 
. . 3
 | 
| 18 | 9, 17 | syld 45 | 
. 2
 | 
| 19 | simpr 110 | 
. . . . 5
 | |
| 20 | elprnql 7548 | 
. . . . . . . . 9
 | |
| 21 | 1, 20 | sylan 283 | 
. . . . . . . 8
 | 
| 22 | 21 | ad2antrr 488 | 
. . . . . . 7
 | 
| 23 | elprnql 7548 | 
. . . . . . . . 9
 | |
| 24 | 5, 23 | sylan 283 | 
. . . . . . . 8
 | 
| 25 | 24 | ad2antlr 489 | 
. . . . . . 7
 | 
| 26 | addclnq 7442 | 
. . . . . . 7
 | |
| 27 | 22, 25, 26 | syl2anc 411 | 
. . . . . 6
 | 
| 28 | recclnq 7459 | 
. . . . . 6
 | |
| 29 | 27, 28 | syl 14 | 
. . . . 5
 | 
| 30 | mulassnqg 7451 | 
. . . . 5
 | |
| 31 | 19, 29, 27, 30 | syl3anc 1249 | 
. . . 4
 | 
| 32 | mulclnq 7443 | 
. . . . . 6
 | |
| 33 | 19, 29, 32 | syl2anc 411 | 
. . . . 5
 | 
| 34 | distrnqg 7454 | 
. . . . 5
 | |
| 35 | 33, 22, 25, 34 | syl3anc 1249 | 
. . . 4
 | 
| 36 | mulcomnqg 7450 | 
. . . . . . . 8
 | |
| 37 | 29, 27, 36 | syl2anc 411 | 
. . . . . . 7
 | 
| 38 | recidnq 7460 | 
. . . . . . . 8
 | |
| 39 | 27, 38 | syl 14 | 
. . . . . . 7
 | 
| 40 | 37, 39 | eqtrd 2229 | 
. . . . . 6
 | 
| 41 | 40 | oveq2d 5938 | 
. . . . 5
 | 
| 42 | mulidnq 7456 | 
. . . . . 6
 | |
| 43 | 42 | adantl 277 | 
. . . . 5
 | 
| 44 | 41, 43 | eqtrd 2229 | 
. . . 4
 | 
| 45 | 31, 35, 44 | 3eqtr3d 2237 | 
. . 3
 | 
| 46 | 45 | eleq1d 2265 | 
. 2
 | 
| 47 | 18, 46 | sylibd 149 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-inp 7533 df-iplp 7535 | 
| This theorem is referenced by: addlocprlemlt 7598 addclpr 7604 | 
| Copyright terms: Public domain | W3C validator |