ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprl Unicode version

Theorem addnqprl 7491
Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addnqprl  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  ->  X  e.  ( 1st `  ( A  +P.  B
) ) ) )

Proof of Theorem addnqprl
Dummy variables  r  q  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7437 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 addnqprllem 7489 . . . . . 6  |-  ( ( ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
) ) )
31, 2sylanl1 400 . . . . 5  |-  ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
) ) )
43adantlr 474 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
) ) )
5 prop 7437 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
6 addnqprllem 7489 . . . . . 6  |-  ( ( ( <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 1st `  B ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 1st `  B
) ) )
75, 6sylanl1 400 . . . . 5  |-  ( ( ( B  e.  P.  /\  H  e.  ( 1st `  B ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 1st `  B
) ) )
87adantll 473 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 1st `  B
) ) )
94, 8jcad 305 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  e.  ( 1st `  A )  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 1st `  B ) ) ) )
10 simpl 108 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) ) )
11 simpl 108 . . . . 5  |-  ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  A  e.  P. )
12 simpl 108 . . . . 5  |-  ( ( B  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  B  e.  P. )
1311, 12anim12i 336 . . . 4  |-  ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) )  ->  ( A  e. 
P.  /\  B  e.  P. ) )
14 df-iplp 7430 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
15 addclnq 7337 . . . . 5  |-  ( ( r  e.  Q.  /\  s  e.  Q. )  ->  ( r  +Q  s
)  e.  Q. )
1614, 15genpprecll 7476 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
)  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 1st `  B ) )  ->  ( (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 1st `  ( A  +P.  B
) ) ) )
1710, 13, 163syl 17 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
)  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 1st `  B ) )  ->  ( (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 1st `  ( A  +P.  B
) ) ) )
189, 17syld 45 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 1st `  ( A  +P.  B ) ) ) )
19 simpr 109 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  X  e.  Q. )
20 elprnql 7443 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  G  e.  Q. )
211, 20sylan 281 . . . . . . . 8  |-  ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  G  e.  Q. )
2221ad2antrr 485 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  G  e.  Q. )
23 elprnql 7443 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  H  e.  Q. )
245, 23sylan 281 . . . . . . . 8  |-  ( ( B  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  H  e.  Q. )
2524ad2antlr 486 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  H  e.  Q. )
26 addclnq 7337 . . . . . . 7  |-  ( ( G  e.  Q.  /\  H  e.  Q. )  ->  ( G  +Q  H
)  e.  Q. )
2722, 25, 26syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( G  +Q  H
)  e.  Q. )
28 recclnq 7354 . . . . . 6  |-  ( ( G  +Q  H )  e.  Q.  ->  ( *Q `  ( G  +Q  H ) )  e. 
Q. )
2927, 28syl 14 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( *Q `  ( G  +Q  H ) )  e.  Q. )
30 mulassnqg 7346 . . . . 5  |-  ( ( X  e.  Q.  /\  ( *Q `  ( G  +Q  H ) )  e.  Q.  /\  ( G  +Q  H )  e. 
Q. )  ->  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) ) )
3119, 29, 27, 30syl3anc 1233 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( X  .Q  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) ) ) )
32 mulclnq 7338 . . . . . 6  |-  ( ( X  e.  Q.  /\  ( *Q `  ( G  +Q  H ) )  e.  Q. )  -> 
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q. )
3319, 29, 32syl2anc 409 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q. )
34 distrnqg 7349 . . . . 5  |-  ( ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q.  /\  G  e.  Q.  /\  H  e. 
Q. )  ->  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) ) )
3533, 22, 25, 34syl3anc 1233 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) ) )
36 mulcomnqg 7345 . . . . . . . 8  |-  ( ( ( *Q `  ( G  +Q  H ) )  e.  Q.  /\  ( G  +Q  H )  e. 
Q. )  ->  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) )  =  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) ) )
3729, 27, 36syl2anc 409 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) )  =  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) ) )
38 recidnq 7355 . . . . . . . 8  |-  ( ( G  +Q  H )  e.  Q.  ->  (
( G  +Q  H
)  .Q  ( *Q
`  ( G  +Q  H ) ) )  =  1Q )
3927, 38syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) )  =  1Q )
4037, 39eqtrd 2203 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) )  =  1Q )
4140oveq2d 5869 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) )  =  ( X  .Q  1Q ) )
42 mulidnq 7351 . . . . . 6  |-  ( X  e.  Q.  ->  ( X  .Q  1Q )  =  X )
4342adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  1Q )  =  X )
4441, 43eqtrd 2203 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) )  =  X )
4531, 35, 443eqtr3d 2211 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  =  X )
4645eleq1d 2239 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 1st `  ( A  +P.  B
) )  <->  X  e.  ( 1st `  ( A  +P.  B ) ) ) )
4718, 46sylibd 148 1  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  ->  X  e.  ( 1st `  ( A  +P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242   1Qc1q 7243    +Q cplq 7244    .Q cmq 7245   *Qcrq 7246    <Q cltq 7247   P.cnp 7253    +P. cpp 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-inp 7428  df-iplp 7430
This theorem is referenced by:  addlocprlemlt  7493  addclpr  7499
  Copyright terms: Public domain W3C validator