ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprl Unicode version

Theorem addnqprl 7470
Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addnqprl  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  ->  X  e.  ( 1st `  ( A  +P.  B
) ) ) )

Proof of Theorem addnqprl
Dummy variables  r  q  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7416 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 addnqprllem 7468 . . . . . 6  |-  ( ( ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
) ) )
31, 2sylanl1 400 . . . . 5  |-  ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
) ) )
43adantlr 469 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
) ) )
5 prop 7416 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
6 addnqprllem 7468 . . . . . 6  |-  ( ( ( <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 1st `  B ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 1st `  B
) ) )
75, 6sylanl1 400 . . . . 5  |-  ( ( ( B  e.  P.  /\  H  e.  ( 1st `  B ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 1st `  B
) ) )
87adantll 468 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 1st `  B
) ) )
94, 8jcad 305 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  e.  ( 1st `  A )  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 1st `  B ) ) ) )
10 simpl 108 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) ) )
11 simpl 108 . . . . 5  |-  ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  A  e.  P. )
12 simpl 108 . . . . 5  |-  ( ( B  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  B  e.  P. )
1311, 12anim12i 336 . . . 4  |-  ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) )  ->  ( A  e. 
P.  /\  B  e.  P. ) )
14 df-iplp 7409 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
15 addclnq 7316 . . . . 5  |-  ( ( r  e.  Q.  /\  s  e.  Q. )  ->  ( r  +Q  s
)  e.  Q. )
1614, 15genpprecll 7455 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
)  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 1st `  B ) )  ->  ( (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 1st `  ( A  +P.  B
) ) ) )
1710, 13, 163syl 17 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  e.  ( 1st `  A
)  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 1st `  B ) )  ->  ( (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 1st `  ( A  +P.  B
) ) ) )
189, 17syld 45 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  -> 
( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 1st `  ( A  +P.  B ) ) ) )
19 simpr 109 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  X  e.  Q. )
20 elprnql 7422 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  G  e.  Q. )
211, 20sylan 281 . . . . . . . 8  |-  ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  G  e.  Q. )
2221ad2antrr 480 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  G  e.  Q. )
23 elprnql 7422 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  H  e.  Q. )
245, 23sylan 281 . . . . . . . 8  |-  ( ( B  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  H  e.  Q. )
2524ad2antlr 481 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  H  e.  Q. )
26 addclnq 7316 . . . . . . 7  |-  ( ( G  e.  Q.  /\  H  e.  Q. )  ->  ( G  +Q  H
)  e.  Q. )
2722, 25, 26syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( G  +Q  H
)  e.  Q. )
28 recclnq 7333 . . . . . 6  |-  ( ( G  +Q  H )  e.  Q.  ->  ( *Q `  ( G  +Q  H ) )  e. 
Q. )
2927, 28syl 14 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( *Q `  ( G  +Q  H ) )  e.  Q. )
30 mulassnqg 7325 . . . . 5  |-  ( ( X  e.  Q.  /\  ( *Q `  ( G  +Q  H ) )  e.  Q.  /\  ( G  +Q  H )  e. 
Q. )  ->  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) ) )
3119, 29, 27, 30syl3anc 1228 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( X  .Q  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) ) ) )
32 mulclnq 7317 . . . . . 6  |-  ( ( X  e.  Q.  /\  ( *Q `  ( G  +Q  H ) )  e.  Q. )  -> 
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q. )
3319, 29, 32syl2anc 409 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q. )
34 distrnqg 7328 . . . . 5  |-  ( ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q.  /\  G  e.  Q.  /\  H  e. 
Q. )  ->  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) ) )
3533, 22, 25, 34syl3anc 1228 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) ) )
36 mulcomnqg 7324 . . . . . . . 8  |-  ( ( ( *Q `  ( G  +Q  H ) )  e.  Q.  /\  ( G  +Q  H )  e. 
Q. )  ->  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) )  =  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) ) )
3729, 27, 36syl2anc 409 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) )  =  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) ) )
38 recidnq 7334 . . . . . . . 8  |-  ( ( G  +Q  H )  e.  Q.  ->  (
( G  +Q  H
)  .Q  ( *Q
`  ( G  +Q  H ) ) )  =  1Q )
3927, 38syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) )  =  1Q )
4037, 39eqtrd 2198 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) )  =  1Q )
4140oveq2d 5858 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) )  =  ( X  .Q  1Q ) )
42 mulidnq 7330 . . . . . 6  |-  ( X  e.  Q.  ->  ( X  .Q  1Q )  =  X )
4342adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  1Q )  =  X )
4441, 43eqtrd 2198 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) )  =  X )
4531, 35, 443eqtr3d 2206 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  =  X )
4645eleq1d 2235 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 1st `  ( A  +P.  B
) )  <->  X  e.  ( 1st `  ( A  +P.  B ) ) ) )
4718, 46sylibd 148 1  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  +Q  H )  ->  X  e.  ( 1st `  ( A  +P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   <.cop 3579   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221   1Qc1q 7222    +Q cplq 7223    .Q cmq 7224   *Qcrq 7225    <Q cltq 7226   P.cnp 7232    +P. cpp 7234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-iplp 7409
This theorem is referenced by:  addlocprlemlt  7472  addclpr  7478
  Copyright terms: Public domain W3C validator