| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addnqprl | Unicode version | ||
| Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) |
| Ref | Expression |
|---|---|
| addnqprl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7601 |
. . . . . 6
| |
| 2 | addnqprllem 7653 |
. . . . . 6
| |
| 3 | 1, 2 | sylanl1 402 |
. . . . 5
|
| 4 | 3 | adantlr 477 |
. . . 4
|
| 5 | prop 7601 |
. . . . . 6
| |
| 6 | addnqprllem 7653 |
. . . . . 6
| |
| 7 | 5, 6 | sylanl1 402 |
. . . . 5
|
| 8 | 7 | adantll 476 |
. . . 4
|
| 9 | 4, 8 | jcad 307 |
. . 3
|
| 10 | simpl 109 |
. . . 4
| |
| 11 | simpl 109 |
. . . . 5
| |
| 12 | simpl 109 |
. . . . 5
| |
| 13 | 11, 12 | anim12i 338 |
. . . 4
|
| 14 | df-iplp 7594 |
. . . . 5
| |
| 15 | addclnq 7501 |
. . . . 5
| |
| 16 | 14, 15 | genpprecll 7640 |
. . . 4
|
| 17 | 10, 13, 16 | 3syl 17 |
. . 3
|
| 18 | 9, 17 | syld 45 |
. 2
|
| 19 | simpr 110 |
. . . . 5
| |
| 20 | elprnql 7607 |
. . . . . . . . 9
| |
| 21 | 1, 20 | sylan 283 |
. . . . . . . 8
|
| 22 | 21 | ad2antrr 488 |
. . . . . . 7
|
| 23 | elprnql 7607 |
. . . . . . . . 9
| |
| 24 | 5, 23 | sylan 283 |
. . . . . . . 8
|
| 25 | 24 | ad2antlr 489 |
. . . . . . 7
|
| 26 | addclnq 7501 |
. . . . . . 7
| |
| 27 | 22, 25, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | recclnq 7518 |
. . . . . 6
| |
| 29 | 27, 28 | syl 14 |
. . . . 5
|
| 30 | mulassnqg 7510 |
. . . . 5
| |
| 31 | 19, 29, 27, 30 | syl3anc 1250 |
. . . 4
|
| 32 | mulclnq 7502 |
. . . . . 6
| |
| 33 | 19, 29, 32 | syl2anc 411 |
. . . . 5
|
| 34 | distrnqg 7513 |
. . . . 5
| |
| 35 | 33, 22, 25, 34 | syl3anc 1250 |
. . . 4
|
| 36 | mulcomnqg 7509 |
. . . . . . . 8
| |
| 37 | 29, 27, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | recidnq 7519 |
. . . . . . . 8
| |
| 39 | 27, 38 | syl 14 |
. . . . . . 7
|
| 40 | 37, 39 | eqtrd 2239 |
. . . . . 6
|
| 41 | 40 | oveq2d 5970 |
. . . . 5
|
| 42 | mulidnq 7515 |
. . . . . 6
| |
| 43 | 42 | adantl 277 |
. . . . 5
|
| 44 | 41, 43 | eqtrd 2239 |
. . . 4
|
| 45 | 31, 35, 44 | 3eqtr3d 2247 |
. . 3
|
| 46 | 45 | eleq1d 2275 |
. 2
|
| 47 | 18, 46 | sylibd 149 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-lti 7433 df-plpq 7470 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-plqqs 7475 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 df-inp 7592 df-iplp 7594 |
| This theorem is referenced by: addlocprlemlt 7657 addclpr 7663 |
| Copyright terms: Public domain | W3C validator |