| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infpnlem1 | Unicode version | ||
| Description: Lemma for infpn 12799. The smallest divisor (greater than 1) |
| Ref | Expression |
|---|---|
| infpnlem.1 |
|
| Ref | Expression |
|---|---|
| infpnlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 9426 |
. . . . . . 7
| |
| 2 | 1 | ad2antrr 488 |
. . . . . 6
|
| 3 | nnz 9426 |
. . . . . . 7
| |
| 4 | 3 | ad2antlr 489 |
. . . . . 6
|
| 5 | zdclt 9485 |
. . . . . 6
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . . 5
|
| 7 | nnre 9078 |
. . . . . . . 8
| |
| 8 | nnre 9078 |
. . . . . . . 8
| |
| 9 | lenlt 8183 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | syl2anr 290 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | nnnn0 9337 |
. . . . . . . 8
| |
| 13 | facndiv 10921 |
. . . . . . . . 9
| |
| 14 | infpnlem.1 |
. . . . . . . . . . 11
| |
| 15 | 14 | oveq1i 5977 |
. . . . . . . . . 10
|
| 16 | nnz 9426 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | eqeltrrid 2295 |
. . . . . . . . 9
|
| 18 | 13, 17 | nsyl 629 |
. . . . . . . 8
|
| 19 | 12, 18 | sylanl1 402 |
. . . . . . 7
|
| 20 | 19 | expr 375 |
. . . . . 6
|
| 21 | 11, 20 | sylbird 170 |
. . . . 5
|
| 22 | condc 855 |
. . . . 5
| |
| 23 | 6, 21, 22 | sylc 62 |
. . . 4
|
| 24 | 23 | expimpd 363 |
. . 3
|
| 25 | 24 | adantrd 279 |
. 2
|
| 26 | 12 | faccld 10918 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 27 | 26 | peano2nnd 9086 |
. . . . . . . . . . . . . . . . . . . 20
|
| 28 | 14, 27 | eqeltrid 2294 |
. . . . . . . . . . . . . . . . . . 19
|
| 29 | 28 | nncnd 9085 |
. . . . . . . . . . . . . . . . . 18
|
| 30 | nndivtr 9113 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 31 | 30 | ex 115 |
. . . . . . . . . . . . . . . . . . . 20
|
| 32 | 31 | 3com13 1211 |
. . . . . . . . . . . . . . . . . . 19
|
| 33 | 32 | 3expa 1206 |
. . . . . . . . . . . . . . . . . 18
|
| 34 | 29, 33 | sylanl1 402 |
. . . . . . . . . . . . . . . . 17
|
| 35 | 34 | adantrl 478 |
. . . . . . . . . . . . . . . 16
|
| 36 | nnre 9078 |
. . . . . . . . . . . . . . . . . . . . . . . 24
| |
| 37 | letri3 8188 |
. . . . . . . . . . . . . . . . . . . . . . . 24
| |
| 38 | 36, 7, 37 | syl2an 289 |
. . . . . . . . . . . . . . . . . . . . . . 23
|
| 39 | 38 | biimprd 158 |
. . . . . . . . . . . . . . . . . . . . . 22
|
| 40 | 39 | exp4b 367 |
. . . . . . . . . . . . . . . . . . . . 21
|
| 41 | 40 | com3l 81 |
. . . . . . . . . . . . . . . . . . . 20
|
| 42 | 41 | imp32 257 |
. . . . . . . . . . . . . . . . . . 19
|
| 43 | 42 | adantll 476 |
. . . . . . . . . . . . . . . . . 18
|
| 44 | 43 | imim2d 54 |
. . . . . . . . . . . . . . . . 17
|
| 45 | 44 | com23 78 |
. . . . . . . . . . . . . . . 16
|
| 46 | 35, 45 | sylan2d 294 |
. . . . . . . . . . . . . . 15
|
| 47 | 46 | exp4d 369 |
. . . . . . . . . . . . . 14
|
| 48 | 47 | com24 87 |
. . . . . . . . . . . . 13
|
| 49 | 48 | exp32 365 |
. . . . . . . . . . . 12
|
| 50 | 49 | com24 87 |
. . . . . . . . . . 11
|
| 51 | 50 | imp31 256 |
. . . . . . . . . 10
|
| 52 | 51 | com14 88 |
. . . . . . . . 9
|
| 53 | 52 | 3imp 1196 |
. . . . . . . 8
|
| 54 | 53 | com3l 81 |
. . . . . . 7
|
| 55 | 54 | ralimdva 2575 |
. . . . . 6
|
| 56 | 55 | ex 115 |
. . . . 5
|
| 57 | 56 | adantld 278 |
. . . 4
|
| 58 | 57 | impd 254 |
. . 3
|
| 59 | prime 9507 |
. . . 4
| |
| 60 | 59 | adantl 277 |
. . 3
|
| 61 | 58, 60 | sylibrd 169 |
. 2
|
| 62 | 25, 61 | jcad 307 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 df-fac 10908 |
| This theorem is referenced by: infpnlem2 12798 |
| Copyright terms: Public domain | W3C validator |