Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infpnlem1 | Unicode version |
Description: Lemma for infpn 12287. The smallest divisor (greater than 1) of is a prime greater than . (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpnlem.1 |
Ref | Expression |
---|---|
infpnlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9206 | . . . . . . 7 | |
2 | 1 | ad2antrr 480 | . . . . . 6 |
3 | nnz 9206 | . . . . . . 7 | |
4 | 3 | ad2antlr 481 | . . . . . 6 |
5 | zdclt 9264 | . . . . . 6 DECID | |
6 | 2, 4, 5 | syl2anc 409 | . . . . 5 DECID |
7 | nnre 8860 | . . . . . . . 8 | |
8 | nnre 8860 | . . . . . . . 8 | |
9 | lenlt 7970 | . . . . . . . 8 | |
10 | 7, 8, 9 | syl2anr 288 | . . . . . . 7 |
11 | 10 | adantr 274 | . . . . . 6 |
12 | nnnn0 9117 | . . . . . . . 8 | |
13 | facndiv 10648 | . . . . . . . . 9 | |
14 | infpnlem.1 | . . . . . . . . . . 11 | |
15 | 14 | oveq1i 5851 | . . . . . . . . . 10 |
16 | nnz 9206 | . . . . . . . . . 10 | |
17 | 15, 16 | eqeltrrid 2253 | . . . . . . . . 9 |
18 | 13, 17 | nsyl 618 | . . . . . . . 8 |
19 | 12, 18 | sylanl1 400 | . . . . . . 7 |
20 | 19 | expr 373 | . . . . . 6 |
21 | 11, 20 | sylbird 169 | . . . . 5 |
22 | condc 843 | . . . . 5 DECID | |
23 | 6, 21, 22 | sylc 62 | . . . 4 |
24 | 23 | expimpd 361 | . . 3 |
25 | 24 | adantrd 277 | . 2 |
26 | 12 | faccld 10645 | . . . . . . . . . . . . . . . . . . . . 21 |
27 | 26 | peano2nnd 8868 | . . . . . . . . . . . . . . . . . . . 20 |
28 | 14, 27 | eqeltrid 2252 | . . . . . . . . . . . . . . . . . . 19 |
29 | 28 | nncnd 8867 | . . . . . . . . . . . . . . . . . 18 |
30 | nndivtr 8895 | . . . . . . . . . . . . . . . . . . . . 21 | |
31 | 30 | ex 114 | . . . . . . . . . . . . . . . . . . . 20 |
32 | 31 | 3com13 1198 | . . . . . . . . . . . . . . . . . . 19 |
33 | 32 | 3expa 1193 | . . . . . . . . . . . . . . . . . 18 |
34 | 29, 33 | sylanl1 400 | . . . . . . . . . . . . . . . . 17 |
35 | 34 | adantrl 470 | . . . . . . . . . . . . . . . 16 |
36 | nnre 8860 | . . . . . . . . . . . . . . . . . . . . . . . 24 | |
37 | letri3 7975 | . . . . . . . . . . . . . . . . . . . . . . . 24 | |
38 | 36, 7, 37 | syl2an 287 | . . . . . . . . . . . . . . . . . . . . . . 23 |
39 | 38 | biimprd 157 | . . . . . . . . . . . . . . . . . . . . . 22 |
40 | 39 | exp4b 365 | . . . . . . . . . . . . . . . . . . . . 21 |
41 | 40 | com3l 81 | . . . . . . . . . . . . . . . . . . . 20 |
42 | 41 | imp32 255 | . . . . . . . . . . . . . . . . . . 19 |
43 | 42 | adantll 468 | . . . . . . . . . . . . . . . . . 18 |
44 | 43 | imim2d 54 | . . . . . . . . . . . . . . . . 17 |
45 | 44 | com23 78 | . . . . . . . . . . . . . . . 16 |
46 | 35, 45 | sylan2d 292 | . . . . . . . . . . . . . . 15 |
47 | 46 | exp4d 367 | . . . . . . . . . . . . . 14 |
48 | 47 | com24 87 | . . . . . . . . . . . . 13 |
49 | 48 | exp32 363 | . . . . . . . . . . . 12 |
50 | 49 | com24 87 | . . . . . . . . . . 11 |
51 | 50 | imp31 254 | . . . . . . . . . 10 |
52 | 51 | com14 88 | . . . . . . . . 9 |
53 | 52 | 3imp 1183 | . . . . . . . 8 |
54 | 53 | com3l 81 | . . . . . . 7 |
55 | 54 | ralimdva 2532 | . . . . . 6 |
56 | 55 | ex 114 | . . . . 5 |
57 | 56 | adantld 276 | . . . 4 |
58 | 57 | impd 252 | . . 3 |
59 | prime 9286 | . . . 4 | |
60 | 59 | adantl 275 | . . 3 |
61 | 58, 60 | sylibrd 168 | . 2 |
62 | 25, 61 | jcad 305 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3a 968 wceq 1343 wcel 2136 wral 2443 class class class wbr 3981 cfv 5187 (class class class)co 5841 cc 7747 cr 7748 c1 7750 caddc 7752 clt 7929 cle 7930 cdiv 8564 cn 8853 cn0 9110 cz 9187 cfa 10634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-seqfrec 10377 df-fac 10635 |
This theorem is referenced by: infpnlem2 12286 |
Copyright terms: Public domain | W3C validator |