ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpnlem1 Unicode version

Theorem infpnlem1 12715
Description: Lemma for infpn 12717. The smallest divisor (greater than 1)  M of  N !  + 
1 is a prime greater than  N. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1  |-  K  =  ( ( ! `  N )  +  1 )
Assertion
Ref Expression
infpnlem1  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  ( N  <  M  /\  A. j  e.  NN  (
( M  /  j
)  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) ) )
Distinct variable groups:    j, N    j, M    j, K

Proof of Theorem infpnlem1
StepHypRef Expression
1 nnz 9393 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  ZZ )
21ad2antrr 488 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  N  e.  ZZ )
3 nnz 9393 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  ZZ )
43ad2antlr 489 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  M  e.  ZZ )
5 zdclt 9452 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <  M )
62, 4, 5syl2anc 411 . . . . 5  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  -> DECID  N  <  M )
7 nnre 9045 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  RR )
8 nnre 9045 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
9 lenlt 8150 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
107, 8, 9syl2anr 290 . . . . . . 7  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( M  <_  N  <->  -.  N  <  M ) )
1110adantr 276 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( M  <_  N  <->  -.  N  <  M ) )
12 nnnn0 9304 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
13 facndiv 10886 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  ( 1  < 
M  /\  M  <_  N ) )  ->  -.  ( ( ( ! `
 N )  +  1 )  /  M
)  e.  ZZ )
14 infpnlem.1 . . . . . . . . . . 11  |-  K  =  ( ( ! `  N )  +  1 )
1514oveq1i 5956 . . . . . . . . . 10  |-  ( K  /  M )  =  ( ( ( ! `
 N )  +  1 )  /  M
)
16 nnz 9393 . . . . . . . . . 10  |-  ( ( K  /  M )  e.  NN  ->  ( K  /  M )  e.  ZZ )
1715, 16eqeltrrid 2293 . . . . . . . . 9  |-  ( ( K  /  M )  e.  NN  ->  (
( ( ! `  N )  +  1 )  /  M )  e.  ZZ )
1813, 17nsyl 629 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  ( 1  < 
M  /\  M  <_  N ) )  ->  -.  ( K  /  M
)  e.  NN )
1912, 18sylanl1 402 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( 1  < 
M  /\  M  <_  N ) )  ->  -.  ( K  /  M
)  e.  NN )
2019expr 375 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( M  <_  N  ->  -.  ( K  /  M )  e.  NN ) )
2111, 20sylbird 170 . . . . 5  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( -.  N  <  M  ->  -.  ( K  /  M
)  e.  NN ) )
22 condc 855 . . . . 5  |-  (DECID  N  < 
M  ->  ( ( -.  N  <  M  ->  -.  ( K  /  M
)  e.  NN )  ->  ( ( K  /  M )  e.  NN  ->  N  <  M ) ) )
236, 21, 22sylc 62 . . . 4  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  1  <  M
)  ->  ( ( K  /  M )  e.  NN  ->  N  <  M ) )
2423expimpd 363 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( 1  < 
M  /\  ( K  /  M )  e.  NN )  ->  N  <  M
) )
2524adantrd 279 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  N  <  M ) )
2612faccld 10883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
2726peano2nnd 9053 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  NN )
2814, 27eqeltrid 2292 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  K  e.  NN )
2928nncnd 9052 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  K  e.  CC )
30 nndivtr 9080 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( j  e.  NN  /\  M  e.  NN  /\  K  e.  CC )  /\  ( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN ) )  ->  ( K  /  j )  e.  NN )
3130ex 115 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  NN  /\  M  e.  NN  /\  K  e.  CC )  ->  (
( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN )  ->  ( K  / 
j )  e.  NN ) )
32313com13 1211 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  CC  /\  M  e.  NN  /\  j  e.  NN )  ->  (
( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN )  ->  ( K  / 
j )  e.  NN ) )
33323expa 1206 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  CC  /\  M  e.  NN )  /\  j  e.  NN )  ->  ( ( ( M  /  j )  e.  NN  /\  ( K  /  M )  e.  NN )  ->  ( K  /  j )  e.  NN ) )
3429, 33sylanl1 402 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  j  e.  NN )  ->  ( ( ( M  /  j )  e.  NN  /\  ( K  /  M )  e.  NN )  ->  ( K  /  j )  e.  NN ) )
3534adantrl 478 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN )  ->  ( K  / 
j )  e.  NN ) )
36 nnre 9045 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  j  e.  RR )
37 letri3 8155 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( j  e.  RR  /\  M  e.  RR )  ->  ( j  =  M  <-> 
( j  <_  M  /\  M  <_  j ) ) )
3836, 7, 37syl2an 289 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( j  e.  NN  /\  M  e.  NN )  ->  ( j  =  M  <-> 
( j  <_  M  /\  M  <_  j ) ) )
3938biimprd 158 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  NN  /\  M  e.  NN )  ->  ( ( j  <_  M  /\  M  <_  j
)  ->  j  =  M ) )
4039exp4b 367 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  ( M  e.  NN  ->  ( j  <_  M  ->  ( M  <_  j  ->  j  =  M ) ) ) )
4140com3l 81 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  NN  ->  (
j  <_  M  ->  ( j  e.  NN  ->  ( M  <_  j  ->  j  =  M ) ) ) )
4241imp32 257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  NN  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  ( M  <_  j  ->  j  =  M ) )
4342adantll 476 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  ( M  <_  j  ->  j  =  M ) )
4443imim2d 54 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  j  =  M ) ) )
4544com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  ( ( ( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
)  ->  j  =  M ) ) )
4635, 45sylan2d 294 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( 1  <  j  /\  ( ( M  / 
j )  e.  NN  /\  ( K  /  M
)  e.  NN ) )  ->  ( (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
)  ->  j  =  M ) ) )
4746exp4d 369 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
1  <  j  ->  ( ( M  /  j
)  e.  NN  ->  ( ( K  /  M
)  e.  NN  ->  ( ( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
4847com24 87 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( j  <_  M  /\  j  e.  NN ) )  ->  (
( K  /  M
)  e.  NN  ->  ( ( M  /  j
)  e.  NN  ->  ( 1  <  j  -> 
( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
4948exp32 365 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( j  <_  M  ->  ( j  e.  NN  ->  ( ( K  /  M )  e.  NN  ->  ( ( M  / 
j )  e.  NN  ->  ( 1  <  j  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) ) ) )
5049com24 87 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( K  /  M )  e.  NN  ->  ( j  e.  NN  ->  ( j  <_  M  ->  ( ( M  / 
j )  e.  NN  ->  ( 1  <  j  ->  ( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) ) ) )
5150imp31 256 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
j  <_  M  ->  ( ( M  /  j
)  e.  NN  ->  ( 1  <  j  -> 
( ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
5251com14 88 . . . . . . . . 9  |-  ( 1  <  j  ->  (
j  <_  M  ->  ( ( M  /  j
)  e.  NN  ->  ( ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) ) ) )
53523imp 1196 . . . . . . . 8  |-  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  (
( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  j  =  M ) ) )
5453com3l 81 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  /\  j  e.  NN )  ->  (
( ( 1  < 
j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  (
( 1  <  j  /\  j  <_  M  /\  ( M  /  j
)  e.  NN )  ->  j  =  M ) ) )
5554ralimdva 2573 . . . . . 6  |-  ( ( ( N  e.  NN  /\  M  e.  NN )  /\  ( K  /  M )  e.  NN )  ->  ( A. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
5655ex 115 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( K  /  M )  e.  NN  ->  ( A. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) ) )
5756adantld 278 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( 1  < 
M  /\  ( K  /  M )  e.  NN )  ->  ( A. j  e.  NN  ( ( 1  <  j  /\  ( K  /  j )  e.  NN )  ->  M  <_  j )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) ) )
5857impd 254 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
59 prime 9474 . . . 4  |-  ( M  e.  NN  ->  ( A. j  e.  NN  ( ( M  / 
j )  e.  NN  ->  ( j  =  1  \/  j  =  M ) )  <->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
6059adantl 277 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( A. j  e.  NN  ( ( M  /  j )  e.  NN  ->  ( j  =  1  \/  j  =  M ) )  <->  A. j  e.  NN  ( ( 1  <  j  /\  j  <_  M  /\  ( M  /  j )  e.  NN )  ->  j  =  M ) ) )
6158, 60sylibrd 169 . 2  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  A. j  e.  NN  ( ( M  /  j )  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) )
6225, 61jcad 307 1  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e.  NN  (
( 1  <  j  /\  ( K  /  j
)  e.  NN )  ->  M  <_  j
) )  ->  ( N  <  M  /\  A. j  e.  NN  (
( M  /  j
)  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   1c1 7928    + caddc 7930    < clt 8109    <_ cle 8110    / cdiv 8747   NNcn 9038   NN0cn0 9297   ZZcz 9374   !cfa 10872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-seqfrec 10595  df-fac 10873
This theorem is referenced by:  infpnlem2  12716
  Copyright terms: Public domain W3C validator