Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infpnlem1 | Unicode version |
Description: Lemma for infpn 12306. The smallest divisor (greater than 1) of is a prime greater than . (Contributed by NM, 5-May-2005.) |
Ref | Expression |
---|---|
infpnlem.1 |
Ref | Expression |
---|---|
infpnlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9224 | . . . . . . 7 | |
2 | 1 | ad2antrr 485 | . . . . . 6 |
3 | nnz 9224 | . . . . . . 7 | |
4 | 3 | ad2antlr 486 | . . . . . 6 |
5 | zdclt 9282 | . . . . . 6 DECID | |
6 | 2, 4, 5 | syl2anc 409 | . . . . 5 DECID |
7 | nnre 8878 | . . . . . . . 8 | |
8 | nnre 8878 | . . . . . . . 8 | |
9 | lenlt 7988 | . . . . . . . 8 | |
10 | 7, 8, 9 | syl2anr 288 | . . . . . . 7 |
11 | 10 | adantr 274 | . . . . . 6 |
12 | nnnn0 9135 | . . . . . . . 8 | |
13 | facndiv 10666 | . . . . . . . . 9 | |
14 | infpnlem.1 | . . . . . . . . . . 11 | |
15 | 14 | oveq1i 5861 | . . . . . . . . . 10 |
16 | nnz 9224 | . . . . . . . . . 10 | |
17 | 15, 16 | eqeltrrid 2258 | . . . . . . . . 9 |
18 | 13, 17 | nsyl 623 | . . . . . . . 8 |
19 | 12, 18 | sylanl1 400 | . . . . . . 7 |
20 | 19 | expr 373 | . . . . . 6 |
21 | 11, 20 | sylbird 169 | . . . . 5 |
22 | condc 848 | . . . . 5 DECID | |
23 | 6, 21, 22 | sylc 62 | . . . 4 |
24 | 23 | expimpd 361 | . . 3 |
25 | 24 | adantrd 277 | . 2 |
26 | 12 | faccld 10663 | . . . . . . . . . . . . . . . . . . . . 21 |
27 | 26 | peano2nnd 8886 | . . . . . . . . . . . . . . . . . . . 20 |
28 | 14, 27 | eqeltrid 2257 | . . . . . . . . . . . . . . . . . . 19 |
29 | 28 | nncnd 8885 | . . . . . . . . . . . . . . . . . 18 |
30 | nndivtr 8913 | . . . . . . . . . . . . . . . . . . . . 21 | |
31 | 30 | ex 114 | . . . . . . . . . . . . . . . . . . . 20 |
32 | 31 | 3com13 1203 | . . . . . . . . . . . . . . . . . . 19 |
33 | 32 | 3expa 1198 | . . . . . . . . . . . . . . . . . 18 |
34 | 29, 33 | sylanl1 400 | . . . . . . . . . . . . . . . . 17 |
35 | 34 | adantrl 475 | . . . . . . . . . . . . . . . 16 |
36 | nnre 8878 | . . . . . . . . . . . . . . . . . . . . . . . 24 | |
37 | letri3 7993 | . . . . . . . . . . . . . . . . . . . . . . . 24 | |
38 | 36, 7, 37 | syl2an 287 | . . . . . . . . . . . . . . . . . . . . . . 23 |
39 | 38 | biimprd 157 | . . . . . . . . . . . . . . . . . . . . . 22 |
40 | 39 | exp4b 365 | . . . . . . . . . . . . . . . . . . . . 21 |
41 | 40 | com3l 81 | . . . . . . . . . . . . . . . . . . . 20 |
42 | 41 | imp32 255 | . . . . . . . . . . . . . . . . . . 19 |
43 | 42 | adantll 473 | . . . . . . . . . . . . . . . . . 18 |
44 | 43 | imim2d 54 | . . . . . . . . . . . . . . . . 17 |
45 | 44 | com23 78 | . . . . . . . . . . . . . . . 16 |
46 | 35, 45 | sylan2d 292 | . . . . . . . . . . . . . . 15 |
47 | 46 | exp4d 367 | . . . . . . . . . . . . . 14 |
48 | 47 | com24 87 | . . . . . . . . . . . . 13 |
49 | 48 | exp32 363 | . . . . . . . . . . . 12 |
50 | 49 | com24 87 | . . . . . . . . . . 11 |
51 | 50 | imp31 254 | . . . . . . . . . 10 |
52 | 51 | com14 88 | . . . . . . . . 9 |
53 | 52 | 3imp 1188 | . . . . . . . 8 |
54 | 53 | com3l 81 | . . . . . . 7 |
55 | 54 | ralimdva 2537 | . . . . . 6 |
56 | 55 | ex 114 | . . . . 5 |
57 | 56 | adantld 276 | . . . 4 |
58 | 57 | impd 252 | . . 3 |
59 | prime 9304 | . . . 4 | |
60 | 59 | adantl 275 | . . 3 |
61 | 58, 60 | sylibrd 168 | . 2 |
62 | 25, 61 | jcad 305 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3a 973 wceq 1348 wcel 2141 wral 2448 class class class wbr 3987 cfv 5196 (class class class)co 5851 cc 7765 cr 7766 c1 7768 caddc 7770 clt 7947 cle 7948 cdiv 8582 cn 8871 cn0 9128 cz 9205 cfa 10652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-inn 8872 df-n0 9129 df-z 9206 df-uz 9481 df-seqfrec 10395 df-fac 10653 |
This theorem is referenced by: infpnlem2 12305 |
Copyright terms: Public domain | W3C validator |