| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isocnv | Unicode version | ||
| Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isocnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 5557 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | f1ocnvfv2 5870 |
. . . . . . . 8
| |
| 4 | 3 | adantrr 479 |
. . . . . . 7
|
| 5 | f1ocnvfv2 5870 |
. . . . . . . 8
| |
| 6 | 5 | adantrl 478 |
. . . . . . 7
|
| 7 | 4, 6 | breq12d 4072 |
. . . . . 6
|
| 8 | 7 | adantlr 477 |
. . . . 5
|
| 9 | f1of 5544 |
. . . . . . 7
| |
| 10 | 1, 9 | syl 14 |
. . . . . 6
|
| 11 | ffvelcdm 5736 |
. . . . . . . . 9
| |
| 12 | ffvelcdm 5736 |
. . . . . . . . 9
| |
| 13 | 11, 12 | anim12dan 600 |
. . . . . . . 8
|
| 14 | breq1 4062 |
. . . . . . . . . . 11
| |
| 15 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 16 | 15 | breq1d 4069 |
. . . . . . . . . . 11
|
| 17 | 14, 16 | bibi12d 235 |
. . . . . . . . . 10
|
| 18 | bicom 140 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | bitrdi 196 |
. . . . . . . . 9
|
| 20 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 21 | 20 | breq2d 4071 |
. . . . . . . . . 10
|
| 22 | breq2 4063 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | bibi12d 235 |
. . . . . . . . 9
|
| 24 | 19, 23 | rspc2va 2898 |
. . . . . . . 8
|
| 25 | 13, 24 | sylan 283 |
. . . . . . 7
|
| 26 | 25 | an32s 568 |
. . . . . 6
|
| 27 | 10, 26 | sylanl1 402 |
. . . . 5
|
| 28 | 8, 27 | bitr3d 190 |
. . . 4
|
| 29 | 28 | ralrimivva 2590 |
. . 3
|
| 30 | 2, 29 | jca 306 |
. 2
|
| 31 | df-isom 5299 |
. 2
| |
| 32 | df-isom 5299 |
. 2
| |
| 33 | 30, 31, 32 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 |
| This theorem is referenced by: isores1 5906 isose 5913 isopo 5915 isoso 5917 isoti 7135 infrenegsupex 9750 infxrnegsupex 11689 relogiso 15460 |
| Copyright terms: Public domain | W3C validator |