| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isocnv | Unicode version | ||
| Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isocnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 5585 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | f1ocnvfv2 5902 |
. . . . . . . 8
| |
| 4 | 3 | adantrr 479 |
. . . . . . 7
|
| 5 | f1ocnvfv2 5902 |
. . . . . . . 8
| |
| 6 | 5 | adantrl 478 |
. . . . . . 7
|
| 7 | 4, 6 | breq12d 4096 |
. . . . . 6
|
| 8 | 7 | adantlr 477 |
. . . . 5
|
| 9 | f1of 5572 |
. . . . . . 7
| |
| 10 | 1, 9 | syl 14 |
. . . . . 6
|
| 11 | ffvelcdm 5768 |
. . . . . . . . 9
| |
| 12 | ffvelcdm 5768 |
. . . . . . . . 9
| |
| 13 | 11, 12 | anim12dan 602 |
. . . . . . . 8
|
| 14 | breq1 4086 |
. . . . . . . . . . 11
| |
| 15 | fveq2 5627 |
. . . . . . . . . . . 12
| |
| 16 | 15 | breq1d 4093 |
. . . . . . . . . . 11
|
| 17 | 14, 16 | bibi12d 235 |
. . . . . . . . . 10
|
| 18 | bicom 140 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | bitrdi 196 |
. . . . . . . . 9
|
| 20 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 21 | 20 | breq2d 4095 |
. . . . . . . . . 10
|
| 22 | breq2 4087 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | bibi12d 235 |
. . . . . . . . 9
|
| 24 | 19, 23 | rspc2va 2921 |
. . . . . . . 8
|
| 25 | 13, 24 | sylan 283 |
. . . . . . 7
|
| 26 | 25 | an32s 568 |
. . . . . 6
|
| 27 | 10, 26 | sylanl1 402 |
. . . . 5
|
| 28 | 8, 27 | bitr3d 190 |
. . . 4
|
| 29 | 28 | ralrimivva 2612 |
. . 3
|
| 30 | 2, 29 | jca 306 |
. 2
|
| 31 | df-isom 5327 |
. 2
| |
| 32 | df-isom 5327 |
. 2
| |
| 33 | 30, 31, 32 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 |
| This theorem is referenced by: isores1 5938 isose 5945 isopo 5947 isoso 5949 isoti 7174 infrenegsupex 9789 infxrnegsupex 11774 relogiso 15547 |
| Copyright terms: Public domain | W3C validator |