ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv Unicode version

Theorem isocnv 5903
Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isocnv  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )

Proof of Theorem isocnv
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 5557 . . . 4  |-  ( H : A -1-1-onto-> B  ->  `' H : B -1-1-onto-> A )
21adantr 276 . . 3  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  `' H : B -1-1-onto-> A )
3 f1ocnvfv2 5870 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  z  e.  B )  ->  ( H `  ( `' H `  z ) )  =  z )
43adantrr 479 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  B  /\  w  e.  B
) )  ->  ( H `  ( `' H `  z )
)  =  z )
5 f1ocnvfv2 5870 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  w  e.  B )  ->  ( H `  ( `' H `  w ) )  =  w )
65adantrl 478 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  B  /\  w  e.  B
) )  ->  ( H `  ( `' H `  w )
)  =  w )
74, 6breq12d 4072 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  B  /\  w  e.  B
) )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  z S w ) )
87adantlr 477 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  z S w ) )
9 f1of 5544 . . . . . . 7  |-  ( `' H : B -1-1-onto-> A  ->  `' H : B --> A )
101, 9syl 14 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  `' H : B --> A )
11 ffvelcdm 5736 . . . . . . . . 9  |-  ( ( `' H : B --> A  /\  z  e.  B )  ->  ( `' H `  z )  e.  A
)
12 ffvelcdm 5736 . . . . . . . . 9  |-  ( ( `' H : B --> A  /\  w  e.  B )  ->  ( `' H `  w )  e.  A
)
1311, 12anim12dan 600 . . . . . . . 8  |-  ( ( `' H : B --> A  /\  ( z  e.  B  /\  w  e.  B
) )  ->  (
( `' H `  z )  e.  A  /\  ( `' H `  w )  e.  A
) )
14 breq1 4062 . . . . . . . . . . 11  |-  ( x  =  ( `' H `  z )  ->  (
x R y  <->  ( `' H `  z ) R y ) )
15 fveq2 5599 . . . . . . . . . . . 12  |-  ( x  =  ( `' H `  z )  ->  ( H `  x )  =  ( H `  ( `' H `  z ) ) )
1615breq1d 4069 . . . . . . . . . . 11  |-  ( x  =  ( `' H `  z )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  ( `' H `  z ) ) S ( H `  y
) ) )
1714, 16bibi12d 235 . . . . . . . . . 10  |-  ( x  =  ( `' H `  z )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( ( `' H `  z ) R y  <-> 
( H `  ( `' H `  z ) ) S ( H `
 y ) ) ) )
18 bicom 140 . . . . . . . . . 10  |-  ( ( ( `' H `  z ) R y  <-> 
( H `  ( `' H `  z ) ) S ( H `
 y ) )  <-> 
( ( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( `' H `  z ) R y ) )
1917, 18bitrdi 196 . . . . . . . . 9  |-  ( x  =  ( `' H `  z )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( ( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( `' H `  z ) R y ) ) )
20 fveq2 5599 . . . . . . . . . . 11  |-  ( y  =  ( `' H `  w )  ->  ( H `  y )  =  ( H `  ( `' H `  w ) ) )
2120breq2d 4071 . . . . . . . . . 10  |-  ( y  =  ( `' H `  w )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( H `  ( `' H `  z ) ) S ( H `  ( `' H `  w ) ) ) )
22 breq2 4063 . . . . . . . . . 10  |-  ( y  =  ( `' H `  w )  ->  (
( `' H `  z ) R y  <-> 
( `' H `  z ) R ( `' H `  w ) ) )
2321, 22bibi12d 235 . . . . . . . . 9  |-  ( y  =  ( `' H `  w )  ->  (
( ( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( `' H `  z ) R y )  <->  ( ( H `  ( `' H `  z )
) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) ) )
2419, 23rspc2va 2898 . . . . . . . 8  |-  ( ( ( ( `' H `  z )  e.  A  /\  ( `' H `  w )  e.  A
)  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
2513, 24sylan 283 . . . . . . 7  |-  ( ( ( `' H : B
--> A  /\  ( z  e.  B  /\  w  e.  B ) )  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
2625an32s 568 . . . . . 6  |-  ( ( ( `' H : B
--> A  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  /\  (
z  e.  B  /\  w  e.  B )
)  ->  ( ( H `  ( `' H `  z )
) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
2710, 26sylanl1 402 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
288, 27bitr3d 190 . . . 4  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z S w  <-> 
( `' H `  z ) R ( `' H `  w ) ) )
2928ralrimivva 2590 . . 3  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( `' H `  z ) R ( `' H `  w ) ) )
302, 29jca 306 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  ( `' H : B -1-1-onto-> A  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( `' H `  z ) R ( `' H `  w ) ) ) )
31 df-isom 5299 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
32 df-isom 5299 . 2  |-  ( `' H  Isom  S ,  R  ( B ,  A )  <->  ( `' H : B -1-1-onto-> A  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( `' H `  z ) R ( `' H `  w ) ) ) )
3330, 31, 323imtr4i 201 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   class class class wbr 4059   `'ccnv 4692   -->wf 5286   -1-1-onto->wf1o 5289   ` cfv 5290    Isom wiso 5291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299
This theorem is referenced by:  isores1  5906  isose  5913  isopo  5915  isoso  5917  isoti  7135  infrenegsupex  9750  infxrnegsupex  11689  relogiso  15460
  Copyright terms: Public domain W3C validator