| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isocnv | Unicode version | ||
| Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isocnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 5517 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | f1ocnvfv2 5825 |
. . . . . . . 8
| |
| 4 | 3 | adantrr 479 |
. . . . . . 7
|
| 5 | f1ocnvfv2 5825 |
. . . . . . . 8
| |
| 6 | 5 | adantrl 478 |
. . . . . . 7
|
| 7 | 4, 6 | breq12d 4046 |
. . . . . 6
|
| 8 | 7 | adantlr 477 |
. . . . 5
|
| 9 | f1of 5504 |
. . . . . . 7
| |
| 10 | 1, 9 | syl 14 |
. . . . . 6
|
| 11 | ffvelcdm 5695 |
. . . . . . . . 9
| |
| 12 | ffvelcdm 5695 |
. . . . . . . . 9
| |
| 13 | 11, 12 | anim12dan 600 |
. . . . . . . 8
|
| 14 | breq1 4036 |
. . . . . . . . . . 11
| |
| 15 | fveq2 5558 |
. . . . . . . . . . . 12
| |
| 16 | 15 | breq1d 4043 |
. . . . . . . . . . 11
|
| 17 | 14, 16 | bibi12d 235 |
. . . . . . . . . 10
|
| 18 | bicom 140 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | bitrdi 196 |
. . . . . . . . 9
|
| 20 | fveq2 5558 |
. . . . . . . . . . 11
| |
| 21 | 20 | breq2d 4045 |
. . . . . . . . . 10
|
| 22 | breq2 4037 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | bibi12d 235 |
. . . . . . . . 9
|
| 24 | 19, 23 | rspc2va 2882 |
. . . . . . . 8
|
| 25 | 13, 24 | sylan 283 |
. . . . . . 7
|
| 26 | 25 | an32s 568 |
. . . . . 6
|
| 27 | 10, 26 | sylanl1 402 |
. . . . 5
|
| 28 | 8, 27 | bitr3d 190 |
. . . 4
|
| 29 | 28 | ralrimivva 2579 |
. . 3
|
| 30 | 2, 29 | jca 306 |
. 2
|
| 31 | df-isom 5267 |
. 2
| |
| 32 | df-isom 5267 |
. 2
| |
| 33 | 30, 31, 32 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 |
| This theorem is referenced by: isores1 5861 isose 5868 isopo 5870 isoso 5872 isoti 7073 infrenegsupex 9668 infxrnegsupex 11428 relogiso 15109 |
| Copyright terms: Public domain | W3C validator |