ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqpru Unicode version

Theorem addnqpru 7560
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addnqpru  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  ->  X  e.  ( 2nd `  ( A  +P.  B
) ) ) )

Proof of Theorem addnqpru
Dummy variables  r  q  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7505 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 addnqprulem 7558 . . . . . 6  |-  ( ( ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
) ) )
31, 2sylanl1 402 . . . . 5  |-  ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
) ) )
43adantlr 477 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
) ) )
5 prop 7505 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
6 addnqprulem 7558 . . . . . 6  |-  ( ( ( <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 2nd `  B ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 2nd `  B
) ) )
75, 6sylanl1 402 . . . . 5  |-  ( ( ( B  e.  P.  /\  H  e.  ( 2nd `  B ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 2nd `  B
) ) )
87adantll 476 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 2nd `  B
) ) )
94, 8jcad 307 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  e.  ( 2nd `  A )  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 2nd `  B ) ) ) )
10 simpl 109 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) ) )
11 simpl 109 . . . . 5  |-  ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  ->  A  e.  P. )
12 simpl 109 . . . . 5  |-  ( ( B  e.  P.  /\  H  e.  ( 2nd `  B ) )  ->  B  e.  P. )
1311, 12anim12i 338 . . . 4  |-  ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) )  ->  ( A  e. 
P.  /\  B  e.  P. ) )
14 df-iplp 7498 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
15 addclnq 7405 . . . . 5  |-  ( ( r  e.  Q.  /\  s  e.  Q. )  ->  ( r  +Q  s
)  e.  Q. )
1614, 15genppreclu 7545 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
)  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 2nd `  B ) )  ->  ( (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 2nd `  ( A  +P.  B
) ) ) )
1710, 13, 163syl 17 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
)  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 2nd `  B ) )  ->  ( (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 2nd `  ( A  +P.  B
) ) ) )
189, 17syld 45 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
19 simpr 110 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  X  e.  Q. )
20 elprnqu 7512 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 2nd `  A ) )  ->  G  e.  Q. )
211, 20sylan 283 . . . . . . . 8  |-  ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  ->  G  e.  Q. )
2221ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  G  e.  Q. )
23 elprnqu 7512 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 2nd `  B ) )  ->  H  e.  Q. )
245, 23sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  H  e.  ( 2nd `  B ) )  ->  H  e.  Q. )
2524ad2antlr 489 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  H  e.  Q. )
26 addclnq 7405 . . . . . . 7  |-  ( ( G  e.  Q.  /\  H  e.  Q. )  ->  ( G  +Q  H
)  e.  Q. )
2722, 25, 26syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( G  +Q  H
)  e.  Q. )
28 recclnq 7422 . . . . . 6  |-  ( ( G  +Q  H )  e.  Q.  ->  ( *Q `  ( G  +Q  H ) )  e. 
Q. )
2927, 28syl 14 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( *Q `  ( G  +Q  H ) )  e.  Q. )
30 mulassnqg 7414 . . . . 5  |-  ( ( X  e.  Q.  /\  ( *Q `  ( G  +Q  H ) )  e.  Q.  /\  ( G  +Q  H )  e. 
Q. )  ->  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) ) )
3119, 29, 27, 30syl3anc 1249 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( X  .Q  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) ) ) )
32 mulclnq 7406 . . . . . 6  |-  ( ( X  e.  Q.  /\  ( *Q `  ( G  +Q  H ) )  e.  Q. )  -> 
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q. )
3319, 29, 32syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q. )
34 distrnqg 7417 . . . . 5  |-  ( ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q.  /\  G  e.  Q.  /\  H  e. 
Q. )  ->  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) ) )
3533, 22, 25, 34syl3anc 1249 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) ) )
36 mulcomnqg 7413 . . . . . . . 8  |-  ( ( ( *Q `  ( G  +Q  H ) )  e.  Q.  /\  ( G  +Q  H )  e. 
Q. )  ->  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) )  =  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) ) )
3729, 27, 36syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) )  =  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) ) )
38 recidnq 7423 . . . . . . . 8  |-  ( ( G  +Q  H )  e.  Q.  ->  (
( G  +Q  H
)  .Q  ( *Q
`  ( G  +Q  H ) ) )  =  1Q )
3927, 38syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) )  =  1Q )
4037, 39eqtrd 2222 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) )  =  1Q )
4140oveq2d 5913 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) )  =  ( X  .Q  1Q ) )
42 mulidnq 7419 . . . . . 6  |-  ( X  e.  Q.  ->  ( X  .Q  1Q )  =  X )
4342adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  1Q )  =  X )
4441, 43eqtrd 2222 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) )  =  X )
4531, 35, 443eqtr3d 2230 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  =  X )
4645eleq1d 2258 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 2nd `  ( A  +P.  B
) )  <->  X  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4718, 46sylibd 149 1  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  ->  X  e.  ( 2nd `  ( A  +P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   <.cop 3610   class class class wbr 4018   ` cfv 5235  (class class class)co 5897   1stc1st 6164   2ndc2nd 6165   Q.cnq 7310   1Qc1q 7311    +Q cplq 7312    .Q cmq 7313   *Qcrq 7314    <Q cltq 7315   P.cnp 7321    +P. cpp 7323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-pli 7335  df-mi 7336  df-lti 7337  df-plpq 7374  df-mpq 7375  df-enq 7377  df-nqqs 7378  df-plqqs 7379  df-mqqs 7380  df-1nqqs 7381  df-rq 7382  df-ltnqqs 7383  df-inp 7496  df-iplp 7498
This theorem is referenced by:  addlocprlemeq  7563  addlocprlemgt  7564  addclpr  7567
  Copyright terms: Public domain W3C validator