ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0pi Unicode version

Theorem nqnq0pi 7400
Description: A nonnegative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
nqnq0pi  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ]  ~Q  )

Proof of Theorem nqnq0pi
Dummy variables  v  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 4641 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. ) 
<->  ( A  e.  N.  /\  B  e.  N. )
)
2 vex 2733 . . . . . . 7  |-  y  e. 
_V
32elima2 4959 . . . . . 6  |-  ( y  e.  ( ~Q0 
" ( N.  X.  N. ) )  <->  E. x
( x  e.  ( N.  X.  N. )  /\  x ~Q0  y ) )
4 elxp 4628 . . . . . . . . . 10  |-  ( x  e.  ( N.  X.  N. )  <->  E. z E. w
( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
) )
54anbi1i 455 . . . . . . . . 9  |-  ( ( x  e.  ( N. 
X.  N. )  /\  x ~Q0  y )  <-> 
( E. z E. w ( x  = 
<. z ,  w >.  /\  ( z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y ) )
6 19.41vv 1896 . . . . . . . . 9  |-  ( E. z E. w ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  <->  ( E. z E. w ( x  =  <. z ,  w >.  /\  ( z  e. 
N.  /\  w  e.  N. ) )  /\  x ~Q0  y ) )
75, 6bitr4i 186 . . . . . . . 8  |-  ( ( x  e.  ( N. 
X.  N. )  /\  x ~Q0  y )  <->  E. z E. w ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y ) )
8 simplr 525 . . . . . . . . . . 11  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  (
z  e.  N.  /\  w  e.  N. )
)
9 breq1 3992 . . . . . . . . . . . . 13  |-  ( x  =  <. z ,  w >.  ->  ( x ~Q0  y  <->  <. z ,  w >. ~Q0  y
) )
109adantr 274 . . . . . . . . . . . 12  |-  ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  ->  ( x ~Q0  y  <->  <. z ,  w >. ~Q0  y ) )
1110biimpa 294 . . . . . . . . . . 11  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  <. z ,  w >. ~Q0  y )
12 id 19 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  ( (
z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
) )
13 enq0er 7397 . . . . . . . . . . . . . . 15  |- ~Q0  Er  ( om  X.  N. )
1413a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  -> ~Q0  Er  ( om  X.  N. ) )
15 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  <. z ,  w >. ~Q0  y )
1614, 15ercl2 6526 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  y  e.  ( om  X.  N. )
)
17 elxp 4628 . . . . . . . . . . . . 13  |-  ( y  e.  ( om  X.  N. )  <->  E. u E. v
( y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )
1816, 17sylib 121 . . . . . . . . . . . 12  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  E. u E. v ( y  = 
<. u ,  v >.  /\  ( u  e.  om  /\  v  e.  N. )
) )
19 19.42vv 1904 . . . . . . . . . . . 12  |-  ( E. u E. v ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  <->  ( (
( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  /\  E. u E. v ( y  = 
<. u ,  v >.  /\  ( u  e.  om  /\  v  e.  N. )
) ) )
2012, 18, 19sylanbrc 415 . . . . . . . . . . 11  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  ->  E. u E. v ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  /\  ( y  =  <. u ,  v
>.  /\  ( u  e. 
om  /\  v  e.  N. ) ) ) )
218, 11, 20syl2anc 409 . . . . . . . . . 10  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  E. u E. v ( ( ( z  e.  N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y
)  /\  ( y  =  <. u ,  v
>.  /\  ( u  e. 
om  /\  v  e.  N. ) ) ) )
22 simprrl 534 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  u  e.  om )
23 elni 7270 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  N.  <->  ( z  e.  om  /\  z  =/=  (/) ) )
2423simprbi 273 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  N.  ->  z  =/=  (/) )
2524neneqd 2361 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  N.  ->  -.  z  =  (/) )
2625ad2antrr 485 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  z  =  (/) )
27 elni 7270 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  e.  N.  <->  ( v  e.  om  /\  v  =/=  (/) ) )
2827simprbi 273 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  e.  N.  ->  v  =/=  (/) )
2928neneqd 2361 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  e.  N.  ->  -.  v  =  (/) )
3029ad2antll 488 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  v  =  (/) )
3126, 30jca 304 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( -.  z  =  (/)  /\  -.  v  =  (/) ) )
32 pm4.56 775 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  z  =  (/)  /\ 
-.  v  =  (/) ) 
<->  -.  ( z  =  (/)  \/  v  =  (/) ) )
3331, 32sylib 121 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  (
z  =  (/)  \/  v  =  (/) ) )
34 pinn 7271 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  N.  ->  z  e.  om )
3534ad2antrr 485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  z  e.  om )
36 pinn 7271 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  N.  ->  v  e.  om )
3736ad2antll 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  v  e.  om )
38 nnm00 6509 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  om  /\  v  e.  om )  ->  ( ( z  .o  v )  =  (/)  <->  (
z  =  (/)  \/  v  =  (/) ) ) )
3935, 37, 38syl2anc 409 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( (
z  .o  v )  =  (/)  <->  ( z  =  (/)  \/  v  =  (/) ) ) )
4033, 39mtbird 668 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  -.  (
z  .o  v )  =  (/) )
4140ad2ant2rl 508 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  ( z  .o  v
)  =  (/) )
42 breq2 3993 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  <. u ,  v
>.  ->  ( <. z ,  w >. ~Q0  y  <->  <. z ,  w >. ~Q0  <. u ,  v >. )
)
4342biimpac 296 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. z ,  w >. ~Q0  y  /\  y  =  <. u ,  v >. )  ->  <. z ,  w >. ~Q0 
<. u ,  v >.
)
4443ad2ant2lr 507 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  <. z ,  w >. ~Q0 
<. u ,  v >.
)
45 enq0breq 7398 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( <. z ,  w >. ~Q0 
<. u ,  v >.  <->  ( z  .o  v )  =  ( w  .o  u ) ) )
4634, 45sylanl1 400 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( <. z ,  w >. ~Q0 
<. u ,  v >.  <->  ( z  .o  v )  =  ( w  .o  u ) ) )
4746ad2ant2rl 508 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  ( <. z ,  w >. ~Q0  <. u ,  v >.  <->  ( z  .o  v )  =  ( w  .o  u ) ) )
4844, 47mpbid 146 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
z  .o  v )  =  ( w  .o  u ) )
4948eqeq1d 2179 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
( z  .o  v
)  =  (/)  <->  ( w  .o  u )  =  (/) ) )
5041, 49mtbid 667 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  ( w  .o  u
)  =  (/) )
51 pinn 7271 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  N.  ->  w  e.  om )
52 nnm00 6509 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( w  e.  om  /\  u  e.  om )  ->  ( ( w  .o  u )  =  (/)  <->  (
w  =  (/)  \/  u  =  (/) ) ) )
5351, 52sylan 281 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  N.  /\  u  e.  om )  ->  ( ( w  .o  u )  =  (/)  <->  (
w  =  (/)  \/  u  =  (/) ) ) )
5453ad2ant2lr 507 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  om  /\  v  e.  N. )
)  ->  ( (
w  .o  u )  =  (/)  <->  ( w  =  (/)  \/  u  =  (/) ) ) )
5554ad2ant2rl 508 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
( w  .o  u
)  =  (/)  <->  ( w  =  (/)  \/  u  =  (/) ) ) )
5650, 55mtbid 667 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  ( w  =  (/)  \/  u  =  (/) ) )
57 pm4.56 775 . . . . . . . . . . . . . . . 16  |-  ( ( -.  w  =  (/)  /\ 
-.  u  =  (/) ) 
<->  -.  ( w  =  (/)  \/  u  =  (/) ) )
5856, 57sylibr 133 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  ( -.  w  =  (/)  /\  -.  u  =  (/) ) )
5958simprd 113 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  -.  u  =  (/) )
6059neneqad 2419 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  u  =/=  (/) )
61 elni 7270 . . . . . . . . . . . . 13  |-  ( u  e.  N.  <->  ( u  e.  om  /\  u  =/=  (/) ) )
6222, 60, 61sylanbrc 415 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  u  e.  N. )
63 simprrr 535 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  v  e.  N. )
64 eleq1 2233 . . . . . . . . . . . . . 14  |-  ( y  =  <. u ,  v
>.  ->  ( y  e.  ( N.  X.  N. ) 
<-> 
<. u ,  v >.  e.  ( N.  X.  N. ) ) )
65 opelxp 4641 . . . . . . . . . . . . . 14  |-  ( <.
u ,  v >.  e.  ( N.  X.  N. ) 
<->  ( u  e.  N.  /\  v  e.  N. )
)
6664, 65bitrdi 195 . . . . . . . . . . . . 13  |-  ( y  =  <. u ,  v
>.  ->  ( y  e.  ( N.  X.  N. ) 
<->  ( u  e.  N.  /\  v  e.  N. )
) )
6766ad2antrl 487 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  (
y  e.  ( N. 
X.  N. )  <->  ( u  e.  N.  /\  v  e. 
N. ) ) )
6862, 63, 67mpbir2and 939 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  y  e.  ( N.  X.  N. ) )
6968exlimivv 1889 . . . . . . . . . 10  |-  ( E. u E. v ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  <. z ,  w >. ~Q0  y )  /\  (
y  =  <. u ,  v >.  /\  (
u  e.  om  /\  v  e.  N. )
) )  ->  y  e.  ( N.  X.  N. ) )
7021, 69syl 14 . . . . . . . . 9  |-  ( ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. ) )
7170exlimivv 1889 . . . . . . . 8  |-  ( E. z E. w ( ( x  =  <. z ,  w >.  /\  (
z  e.  N.  /\  w  e.  N. )
)  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. ) )
727, 71sylbi 120 . . . . . . 7  |-  ( ( x  e.  ( N. 
X.  N. )  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. )
)
7372exlimiv 1591 . . . . . 6  |-  ( E. x ( x  e.  ( N.  X.  N. )  /\  x ~Q0  y )  ->  y  e.  ( N.  X.  N. ) )
743, 73sylbi 120 . . . . 5  |-  ( y  e.  ( ~Q0 
" ( N.  X.  N. ) )  ->  y  e.  ( N.  X.  N. ) )
7574ssriv 3151 . . . 4  |-  ( ~Q0  " ( N.  X.  N. ) ) 
C_  ( N.  X.  N. )
76 ecinxp 6588 . . . 4  |-  ( ( ( ~Q0  " ( N.  X.  N. ) )  C_  ( N.  X.  N. )  /\  <. A ,  B >.  e.  ( N.  X.  N. ) )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ( ~Q0  i^i  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) ) )
7775, 76mpan 422 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ( ~Q0  i^i  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) ) )
781, 77sylbir 134 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ] ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) ) )
79 enq0enq 7393 . . 3  |-  ~Q  =  ( ~Q0  i^i  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
80 eceq2 6550 . . 3  |-  (  ~Q  =  ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) )  ->  [ <. A ,  B >. ]  ~Q  =  [ <. A ,  B >. ] ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) ) )
8179, 80ax-mp 5 . 2  |-  [ <. A ,  B >. ]  ~Q  =  [ <. A ,  B >. ] ( ~Q0  i^i  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) )
8278, 81eqtr4di 2221 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  [ <. A ,  B >. ] ~Q0  =  [ <. A ,  B >. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340    i^i cin 3120    C_ wss 3121   (/)c0 3414   <.cop 3586   class class class wbr 3989   omcom 4574    X. cxp 4609   "cima 4614  (class class class)co 5853    .o comu 6393    Er wer 6510   [cec 6511   N.cnpi 7234    ~Q ceq 7241   ~Q0 ceq0 7248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-ni 7266  df-mi 7268  df-enq 7309  df-enq0 7386
This theorem is referenced by:  nqnq0  7403  nqpnq0nq  7415  nqnq0a  7416  nqnq0m  7417  prarloclemlo  7456  prarloclemcalc  7464
  Copyright terms: Public domain W3C validator