ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulginvcom Unicode version

Theorem mulginvcom 13598
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulginvcom.b  |-  B  =  ( Base `  G
)
mulginvcom.t  |-  .x.  =  (.g
`  G )
mulginvcom.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulginvcom  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )

Proof of Theorem mulginvcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5974 . . . . . 6  |-  ( x  =  0  ->  (
x  .x.  ( I `  X ) )  =  ( 0  .x.  (
I `  X )
) )
2 fvoveq1 5990 . . . . . 6  |-  ( x  =  0  ->  (
I `  ( x  .x.  X ) )  =  ( I `  (
0  .x.  X )
) )
31, 2eqeq12d 2222 . . . . 5  |-  ( x  =  0  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( 0 
.x.  ( I `  X ) )  =  ( I `  (
0  .x.  X )
) ) )
4 oveq1 5974 . . . . . 6  |-  ( x  =  y  ->  (
x  .x.  ( I `  X ) )  =  ( y  .x.  (
I `  X )
) )
5 fvoveq1 5990 . . . . . 6  |-  ( x  =  y  ->  (
I `  ( x  .x.  X ) )  =  ( I `  (
y  .x.  X )
) )
64, 5eqeq12d 2222 . . . . 5  |-  ( x  =  y  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) ) ) )
7 oveq1 5974 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  ( I `  X ) )  =  ( ( y  +  1 )  .x.  (
I `  X )
) )
8 fvoveq1 5990 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
I `  ( x  .x.  X ) )  =  ( I `  (
( y  +  1 )  .x.  X ) ) )
97, 8eqeq12d 2222 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( (
y  +  1 ) 
.x.  ( I `  X ) )  =  ( I `  (
( y  +  1 )  .x.  X ) ) ) )
10 oveq1 5974 . . . . . 6  |-  ( x  =  -u y  ->  (
x  .x.  ( I `  X ) )  =  ( -u y  .x.  ( I `  X
) ) )
11 fvoveq1 5990 . . . . . 6  |-  ( x  =  -u y  ->  (
I `  ( x  .x.  X ) )  =  ( I `  ( -u y  .x.  X ) ) )
1210, 11eqeq12d 2222 . . . . 5  |-  ( x  =  -u y  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) )
13 oveq1 5974 . . . . . 6  |-  ( x  =  N  ->  (
x  .x.  ( I `  X ) )  =  ( N  .x.  (
I `  X )
) )
14 fvoveq1 5990 . . . . . 6  |-  ( x  =  N  ->  (
I `  ( x  .x.  X ) )  =  ( I `  ( N  .x.  X ) ) )
1513, 14eqeq12d 2222 . . . . 5  |-  ( x  =  N  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( N  .x.  ( I `  X
) )  =  ( I `  ( N 
.x.  X ) ) ) )
16 eqid 2207 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
17 mulginvcom.i . . . . . . . . 9  |-  I  =  ( invg `  G )
1816, 17grpinvid 13507 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
I `  ( 0g `  G ) )  =  ( 0g `  G
) )
1918eqcomd 2213 . . . . . . 7  |-  ( G  e.  Grp  ->  ( 0g `  G )  =  ( I `  ( 0g `  G ) ) )
2019adantr 276 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0g `  G
)  =  ( I `
 ( 0g `  G ) ) )
21 mulginvcom.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2221, 17grpinvcl 13495 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  X
)  e.  B )
23 mulginvcom.t . . . . . . . 8  |-  .x.  =  (.g
`  G )
2421, 16, 23mulg0 13576 . . . . . . 7  |-  ( ( I `  X )  e.  B  ->  (
0  .x.  ( I `  X ) )  =  ( 0g `  G
) )
2522, 24syl 14 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  (
I `  X )
)  =  ( 0g
`  G ) )
2621, 16, 23mulg0 13576 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2726adantl 277 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
2827fveq2d 5603 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  (
0  .x.  X )
)  =  ( I `
 ( 0g `  G ) ) )
2920, 25, 283eqtr4d 2250 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  (
I `  X )
)  =  ( I `
 ( 0  .x. 
X ) ) )
30 oveq2 5975 . . . . . . . . . 10  |-  ( ( y  .x.  ( I `
 X ) )  =  ( I `  ( y  .x.  X
) )  ->  (
( I `  X
) ( +g  `  G
) ( y  .x.  ( I `  X
) ) )  =  ( ( I `  X ) ( +g  `  G ) ( I `
 ( y  .x.  X ) ) ) )
3130adantl 277 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( ( I `
 X ) ( +g  `  G ) ( y  .x.  (
I `  X )
) )  =  ( ( I `  X
) ( +g  `  G
) ( I `  ( y  .x.  X
) ) ) )
32 grpmnd 13454 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  G  e.  Mnd )
33323ad2ant1 1021 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  G  e.  Mnd )
34 simp2 1001 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  y  e.  NN0 )
35223adant2 1019 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  X )  e.  B )
36 eqid 2207 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
3721, 23, 36mulgnn0p1 13584 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  (
I `  X )  e.  B )  ->  (
( y  +  1 )  .x.  ( I `
 X ) )  =  ( ( y 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
3833, 34, 35, 37syl3anc 1250 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  ( I `
 X ) )  =  ( ( y 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
39 simp1 1000 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  G  e.  Grp )
40 nn0z 9427 . . . . . . . . . . . . 13  |-  ( y  e.  NN0  ->  y  e.  ZZ )
41403ad2ant2 1022 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  y  e.  ZZ )
4221, 23, 36mulgaddcom 13597 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  (
I `  X )  e.  B )  ->  (
( y  .x.  (
I `  X )
) ( +g  `  G
) ( I `  X ) )  =  ( ( I `  X ) ( +g  `  G ) ( y 
.x.  ( I `  X ) ) ) )
4339, 41, 35, 42syl3anc 1250 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  .x.  (
I `  X )
) ( +g  `  G
) ( I `  X ) )  =  ( ( I `  X ) ( +g  `  G ) ( y 
.x.  ( I `  X ) ) ) )
4438, 43eqtrd 2240 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  ( I `
 X ) )  =  ( ( I `
 X ) ( +g  `  G ) ( y  .x.  (
I `  X )
) ) )
4544adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( ( I `  X
) ( +g  `  G
) ( y  .x.  ( I `  X
) ) ) )
4621, 23, 36mulgnn0p1 13584 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  G ) X ) )
4732, 46syl3an1 1283 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  G ) X ) )
4847fveq2d 5603 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  ( (
y  +  1 ) 
.x.  X ) )  =  ( I `  ( ( y  .x.  X ) ( +g  `  G ) X ) ) )
4921, 23mulgcl 13590 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5040, 49syl3an2 1284 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5121, 36, 17grpinvadd 13525 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( y  .x.  X
)  e.  B  /\  X  e.  B )  ->  ( I `  (
( y  .x.  X
) ( +g  `  G
) X ) )  =  ( ( I `
 X ) ( +g  `  G ) ( I `  (
y  .x.  X )
) ) )
5250, 51syld3an2 1297 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  ( (
y  .x.  X )
( +g  `  G ) X ) )  =  ( ( I `  X ) ( +g  `  G ) ( I `
 ( y  .x.  X ) ) ) )
5348, 52eqtrd 2240 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  ( (
y  +  1 ) 
.x.  X ) )  =  ( ( I `
 X ) ( +g  `  G ) ( I `  (
y  .x.  X )
) ) )
5453adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( I `  ( ( y  +  1 )  .x.  X
) )  =  ( ( I `  X
) ( +g  `  G
) ( I `  ( y  .x.  X
) ) ) )
5531, 45, 543eqtr4d 2250 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( I `  ( ( y  +  1 ) 
.x.  X ) ) )
56553exp1 1226 . . . . . . 7  |-  ( G  e.  Grp  ->  (
y  e.  NN0  ->  ( X  e.  B  -> 
( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( I `  ( ( y  +  1 ) 
.x.  X ) ) ) ) ) )
5756com23 78 . . . . . 6  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( y  e.  NN0  ->  ( ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) )  -> 
( ( y  +  1 )  .x.  (
I `  X )
)  =  ( I `
 ( ( y  +  1 )  .x.  X ) ) ) ) ) )
5857imp 124 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN0  ->  ( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( I `  ( ( y  +  1 ) 
.x.  X ) ) ) ) )
59 nnz 9426 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
60223adant2 1019 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
I `  X )  e.  B )
6121, 23, 17mulgneg 13591 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  (
I `  X )  e.  B )  ->  ( -u y  .x.  ( I `
 X ) )  =  ( I `  ( y  .x.  (
I `  X )
) ) )
6260, 61syld3an3 1295 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  ( I `
 X ) )  =  ( I `  ( y  .x.  (
I `  X )
) ) )
6362adantr 276 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  ( I `  X ) ) ) )
6421, 23, 17mulgneg 13591 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  =  ( I `  ( y  .x.  X
) ) )
6564adantr 276 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  =  ( I `  ( y 
.x.  X ) ) )
66 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) ) )
6765, 66eqtr4d 2243 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  =  ( y  .x.  ( I `
 X ) ) )
6867fveq2d 5603 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( I `  ( -u y  .x.  X
) )  =  ( I `  ( y 
.x.  ( I `  X ) ) ) )
6963, 68eqtr4d 2243 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) )
70693exp1 1226 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
y  e.  ZZ  ->  ( X  e.  B  -> 
( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) ) ) )
7170com23 78 . . . . . . 7  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( y  e.  ZZ  ->  ( ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) )  -> 
( -u y  .x.  (
I `  X )
)  =  ( I `
 ( -u y  .x.  X ) ) ) ) ) )
7271imp 124 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  ZZ  ->  ( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) ) )
7359, 72syl5 32 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN  ->  ( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) ) )
743, 6, 9, 12, 15, 29, 58, 73zindd 9526 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( N  .x.  (
I `  X )
)  =  ( I `
 ( N  .x.  X ) ) ) )
7574ex 115 . . 3  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( N  e.  ZZ  ->  ( N  .x.  ( I `
 X ) )  =  ( I `  ( N  .x.  X ) ) ) ) )
7675com23 78 . 2  |-  ( G  e.  Grp  ->  ( N  e.  ZZ  ->  ( X  e.  B  -> 
( N  .x.  (
I `  X )
)  =  ( I `
 ( N  .x.  X ) ) ) ) )
77763imp 1196 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   0cc0 7960   1c1 7961    + caddc 7963   -ucneg 8279   NNcn 9071   NN0cn0 9330   ZZcz 9407   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Mndcmnd 13363   Grpcgrp 13447   invgcminusg 13448  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-mulg 13571
This theorem is referenced by:  mulginvinv  13599
  Copyright terms: Public domain W3C validator