ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulginvcom Unicode version

Theorem mulginvcom 13008
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulginvcom.b  |-  B  =  ( Base `  G
)
mulginvcom.t  |-  .x.  =  (.g
`  G )
mulginvcom.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulginvcom  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )

Proof of Theorem mulginvcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5882 . . . . . 6  |-  ( x  =  0  ->  (
x  .x.  ( I `  X ) )  =  ( 0  .x.  (
I `  X )
) )
2 fvoveq1 5898 . . . . . 6  |-  ( x  =  0  ->  (
I `  ( x  .x.  X ) )  =  ( I `  (
0  .x.  X )
) )
31, 2eqeq12d 2192 . . . . 5  |-  ( x  =  0  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( 0 
.x.  ( I `  X ) )  =  ( I `  (
0  .x.  X )
) ) )
4 oveq1 5882 . . . . . 6  |-  ( x  =  y  ->  (
x  .x.  ( I `  X ) )  =  ( y  .x.  (
I `  X )
) )
5 fvoveq1 5898 . . . . . 6  |-  ( x  =  y  ->  (
I `  ( x  .x.  X ) )  =  ( I `  (
y  .x.  X )
) )
64, 5eqeq12d 2192 . . . . 5  |-  ( x  =  y  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) ) ) )
7 oveq1 5882 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  ( I `  X ) )  =  ( ( y  +  1 )  .x.  (
I `  X )
) )
8 fvoveq1 5898 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
I `  ( x  .x.  X ) )  =  ( I `  (
( y  +  1 )  .x.  X ) ) )
97, 8eqeq12d 2192 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( (
y  +  1 ) 
.x.  ( I `  X ) )  =  ( I `  (
( y  +  1 )  .x.  X ) ) ) )
10 oveq1 5882 . . . . . 6  |-  ( x  =  -u y  ->  (
x  .x.  ( I `  X ) )  =  ( -u y  .x.  ( I `  X
) ) )
11 fvoveq1 5898 . . . . . 6  |-  ( x  =  -u y  ->  (
I `  ( x  .x.  X ) )  =  ( I `  ( -u y  .x.  X ) ) )
1210, 11eqeq12d 2192 . . . . 5  |-  ( x  =  -u y  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) )
13 oveq1 5882 . . . . . 6  |-  ( x  =  N  ->  (
x  .x.  ( I `  X ) )  =  ( N  .x.  (
I `  X )
) )
14 fvoveq1 5898 . . . . . 6  |-  ( x  =  N  ->  (
I `  ( x  .x.  X ) )  =  ( I `  ( N  .x.  X ) ) )
1513, 14eqeq12d 2192 . . . . 5  |-  ( x  =  N  ->  (
( x  .x.  (
I `  X )
)  =  ( I `
 ( x  .x.  X ) )  <->  ( N  .x.  ( I `  X
) )  =  ( I `  ( N 
.x.  X ) ) ) )
16 eqid 2177 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
17 mulginvcom.i . . . . . . . . 9  |-  I  =  ( invg `  G )
1816, 17grpinvid 12930 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
I `  ( 0g `  G ) )  =  ( 0g `  G
) )
1918eqcomd 2183 . . . . . . 7  |-  ( G  e.  Grp  ->  ( 0g `  G )  =  ( I `  ( 0g `  G ) ) )
2019adantr 276 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0g `  G
)  =  ( I `
 ( 0g `  G ) ) )
21 mulginvcom.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2221, 17grpinvcl 12921 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  X
)  e.  B )
23 mulginvcom.t . . . . . . . 8  |-  .x.  =  (.g
`  G )
2421, 16, 23mulg0 12988 . . . . . . 7  |-  ( ( I `  X )  e.  B  ->  (
0  .x.  ( I `  X ) )  =  ( 0g `  G
) )
2522, 24syl 14 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  (
I `  X )
)  =  ( 0g
`  G ) )
2621, 16, 23mulg0 12988 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2726adantl 277 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
2827fveq2d 5520 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( I `  (
0  .x.  X )
)  =  ( I `
 ( 0g `  G ) ) )
2920, 25, 283eqtr4d 2220 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  (
I `  X )
)  =  ( I `
 ( 0  .x. 
X ) ) )
30 oveq2 5883 . . . . . . . . . 10  |-  ( ( y  .x.  ( I `
 X ) )  =  ( I `  ( y  .x.  X
) )  ->  (
( I `  X
) ( +g  `  G
) ( y  .x.  ( I `  X
) ) )  =  ( ( I `  X ) ( +g  `  G ) ( I `
 ( y  .x.  X ) ) ) )
3130adantl 277 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( ( I `
 X ) ( +g  `  G ) ( y  .x.  (
I `  X )
) )  =  ( ( I `  X
) ( +g  `  G
) ( I `  ( y  .x.  X
) ) ) )
32 grpmnd 12884 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  G  e.  Mnd )
33323ad2ant1 1018 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  G  e.  Mnd )
34 simp2 998 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  y  e.  NN0 )
35223adant2 1016 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  X )  e.  B )
36 eqid 2177 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
3721, 23, 36mulgnn0p1 12994 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  (
I `  X )  e.  B )  ->  (
( y  +  1 )  .x.  ( I `
 X ) )  =  ( ( y 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
3833, 34, 35, 37syl3anc 1238 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  ( I `
 X ) )  =  ( ( y 
.x.  ( I `  X ) ) ( +g  `  G ) ( I `  X
) ) )
39 simp1 997 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  G  e.  Grp )
40 nn0z 9273 . . . . . . . . . . . . 13  |-  ( y  e.  NN0  ->  y  e.  ZZ )
41403ad2ant2 1019 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  y  e.  ZZ )
4221, 23, 36mulgaddcom 13007 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  (
I `  X )  e.  B )  ->  (
( y  .x.  (
I `  X )
) ( +g  `  G
) ( I `  X ) )  =  ( ( I `  X ) ( +g  `  G ) ( y 
.x.  ( I `  X ) ) ) )
4339, 41, 35, 42syl3anc 1238 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  .x.  (
I `  X )
) ( +g  `  G
) ( I `  X ) )  =  ( ( I `  X ) ( +g  `  G ) ( y 
.x.  ( I `  X ) ) ) )
4438, 43eqtrd 2210 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  ( I `
 X ) )  =  ( ( I `
 X ) ( +g  `  G ) ( y  .x.  (
I `  X )
) ) )
4544adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( ( I `  X
) ( +g  `  G
) ( y  .x.  ( I `  X
) ) ) )
4621, 23, 36mulgnn0p1 12994 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  G ) X ) )
4732, 46syl3an1 1271 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  G ) X ) )
4847fveq2d 5520 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  ( (
y  +  1 ) 
.x.  X ) )  =  ( I `  ( ( y  .x.  X ) ( +g  `  G ) X ) ) )
4921, 23mulgcl 13000 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5040, 49syl3an2 1272 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5121, 36, 17grpinvadd 12948 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( y  .x.  X
)  e.  B  /\  X  e.  B )  ->  ( I `  (
( y  .x.  X
) ( +g  `  G
) X ) )  =  ( ( I `
 X ) ( +g  `  G ) ( I `  (
y  .x.  X )
) ) )
5250, 51syld3an2 1285 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  ( (
y  .x.  X )
( +g  `  G ) X ) )  =  ( ( I `  X ) ( +g  `  G ) ( I `
 ( y  .x.  X ) ) ) )
5348, 52eqtrd 2210 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  ->  (
I `  ( (
y  +  1 ) 
.x.  X ) )  =  ( ( I `
 X ) ( +g  `  G ) ( I `  (
y  .x.  X )
) ) )
5453adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( I `  ( ( y  +  1 )  .x.  X
) )  =  ( ( I `  X
) ( +g  `  G
) ( I `  ( y  .x.  X
) ) ) )
5531, 45, 543eqtr4d 2220 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  y  e.  NN0  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( I `  ( ( y  +  1 ) 
.x.  X ) ) )
56553exp1 1223 . . . . . . 7  |-  ( G  e.  Grp  ->  (
y  e.  NN0  ->  ( X  e.  B  -> 
( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( I `  ( ( y  +  1 ) 
.x.  X ) ) ) ) ) )
5756com23 78 . . . . . 6  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( y  e.  NN0  ->  ( ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) )  -> 
( ( y  +  1 )  .x.  (
I `  X )
)  =  ( I `
 ( ( y  +  1 )  .x.  X ) ) ) ) ) )
5857imp 124 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN0  ->  ( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( ( y  +  1 )  .x.  ( I `  X
) )  =  ( I `  ( ( y  +  1 ) 
.x.  X ) ) ) ) )
59 nnz 9272 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
60223adant2 1016 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
I `  X )  e.  B )
6121, 23, 17mulgneg 13001 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  (
I `  X )  e.  B )  ->  ( -u y  .x.  ( I `
 X ) )  =  ( I `  ( y  .x.  (
I `  X )
) ) )
6260, 61syld3an3 1283 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  ( I `
 X ) )  =  ( I `  ( y  .x.  (
I `  X )
) ) )
6362adantr 276 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  ( I `  X ) ) ) )
6421, 23, 17mulgneg 13001 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  =  ( I `  ( y  .x.  X
) ) )
6564adantr 276 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  =  ( I `  ( y 
.x.  X ) ) )
66 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) ) )
6765, 66eqtr4d 2213 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  X )  =  ( y  .x.  ( I `
 X ) ) )
6867fveq2d 5520 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( I `  ( -u y  .x.  X
) )  =  ( I `  ( y 
.x.  ( I `  X ) ) ) )
6963, 68eqtr4d 2213 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) )
70693exp1 1223 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
y  e.  ZZ  ->  ( X  e.  B  -> 
( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) ) ) )
7170com23 78 . . . . . . 7  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( y  e.  ZZ  ->  ( ( y  .x.  (
I `  X )
)  =  ( I `
 ( y  .x.  X ) )  -> 
( -u y  .x.  (
I `  X )
)  =  ( I `
 ( -u y  .x.  X ) ) ) ) ) )
7271imp 124 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  ZZ  ->  ( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) ) )
7359, 72syl5 32 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN  ->  ( ( y  .x.  ( I `  X
) )  =  ( I `  ( y 
.x.  X ) )  ->  ( -u y  .x.  ( I `  X
) )  =  ( I `  ( -u y  .x.  X ) ) ) ) )
743, 6, 9, 12, 15, 29, 58, 73zindd 9371 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( N  .x.  (
I `  X )
)  =  ( I `
 ( N  .x.  X ) ) ) )
7574ex 115 . . 3  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( N  e.  ZZ  ->  ( N  .x.  ( I `
 X ) )  =  ( I `  ( N  .x.  X ) ) ) ) )
7675com23 78 . 2  |-  ( G  e.  Grp  ->  ( N  e.  ZZ  ->  ( X  e.  B  -> 
( N  .x.  (
I `  X )
)  =  ( I `
 ( N  .x.  X ) ) ) ) )
77763imp 1193 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   0cc0 7811   1c1 7812    + caddc 7814   -ucneg 8129   NNcn 8919   NN0cn0 9176   ZZcz 9253   Basecbs 12462   +g cplusg 12536   0gc0g 12705   Mndcmnd 12817   Grpcgrp 12877   invgcminusg 12878  .gcmg 12983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-mulg 12984
This theorem is referenced by:  mulginvinv  13009
  Copyright terms: Public domain W3C validator