ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nppcan2 Unicode version

Theorem nppcan2 8257
Description: Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.)
Assertion
Ref Expression
nppcan2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  ( B  +  C )
)  +  C )  =  ( A  -  B ) )

Proof of Theorem nppcan2
StepHypRef Expression
1 addcl 8004 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C
)  e.  CC )
213adant1 1017 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C )  e.  CC )
3 subsub 8256 . . 3  |-  ( ( A  e.  CC  /\  ( B  +  C
)  e.  CC  /\  C  e.  CC )  ->  ( A  -  (
( B  +  C
)  -  C ) )  =  ( ( A  -  ( B  +  C ) )  +  C ) )
42, 3syld3an2 1296 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( ( B  +  C )  -  C ) )  =  ( ( A  -  ( B  +  C
) )  +  C
) )
5 pncan 8232 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  +  C )  -  C
)  =  B )
653adant1 1017 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  +  C
)  -  C )  =  B )
76oveq2d 5938 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( ( B  +  C )  -  C ) )  =  ( A  -  B
) )
84, 7eqtr3d 2231 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  ( B  +  C )
)  +  C )  =  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877    + caddc 7882    - cmin 8197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199
This theorem is referenced by:  subsub4  8259  nppcan2d  8363
  Copyright terms: Public domain W3C validator