ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssub2 Unicode version

Theorem dvdssub2 11845
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
dvdssub2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  M 
<->  K  ||  N ) )

Proof of Theorem dvdssub2
StepHypRef Expression
1 zsubcl 9297 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
213adant1 1015 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N )  e.  ZZ )
3 dvds2sub 11836 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  ( M  -  N )  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  ( M  -  N ) )  ->  K  ||  ( M  -  ( M  -  N ) ) ) )
42, 3syld3an3 1283 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  ( M  -  N ) )  ->  K  ||  ( M  -  ( M  -  N ) ) ) )
54ancomsd 269 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  ( M  -  N )  /\  K  ||  M )  ->  K  ||  ( M  -  ( M  -  N ) ) ) )
65imp 124 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  M ) )  ->  K  ||  ( M  -  ( M  -  N ) ) )
7 zcn 9261 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
8 zcn 9261 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
9 nncan 8189 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  -  ( M  -  N )
)  =  N )
107, 8, 9syl2an 289 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  ( M  -  N )
)  =  N )
11103adant1 1015 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  ( M  -  N ) )  =  N )
1211adantr 276 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  M ) )  ->  ( M  -  ( M  -  N ) )  =  N )
136, 12breqtrd 4031 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  M ) )  ->  K  ||  N
)
1413expr 375 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  M  ->  K  ||  N
) )
15 dvds2add 11835 . . . . . 6  |-  ( ( K  e.  ZZ  /\  ( M  -  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  ( M  -  N
)  /\  K  ||  N
)  ->  K  ||  (
( M  -  N
)  +  N ) ) )
162, 15syld3an2 1285 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  ( M  -  N )  /\  K  ||  N )  ->  K  ||  (
( M  -  N
)  +  N ) ) )
1716imp 124 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  N ) )  ->  K  ||  (
( M  -  N
)  +  N ) )
18 npcan 8169 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  -  N )  +  N
)  =  M )
197, 8, 18syl2an 289 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  -  N )  +  N
)  =  M )
20193adant1 1015 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  -  N
)  +  N )  =  M )
2120adantr 276 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  N ) )  ->  ( ( M  -  N )  +  N )  =  M )
2217, 21breqtrd 4031 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  N ) )  ->  K  ||  M
)
2322expr 375 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  N  ->  K  ||  M
) )
2414, 23impbid 129 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  M 
<->  K  ||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5878   CCcc 7812    + caddc 7817    - cmin 8131   ZZcz 9256    || cdvds 11797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-dvds 11798
This theorem is referenced by:  dvdsadd  11846  2sqlem8  14610
  Copyright terms: Public domain W3C validator