ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssub2 Unicode version

Theorem dvdssub2 11702
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
dvdssub2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  M 
<->  K  ||  N ) )

Proof of Theorem dvdssub2
StepHypRef Expression
1 zsubcl 9187 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
213adant1 1000 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N )  e.  ZZ )
3 dvds2sub 11695 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  ( M  -  N )  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  ( M  -  N ) )  ->  K  ||  ( M  -  ( M  -  N ) ) ) )
42, 3syld3an3 1262 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  ( M  -  N ) )  ->  K  ||  ( M  -  ( M  -  N ) ) ) )
54ancomsd 267 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  ( M  -  N )  /\  K  ||  M )  ->  K  ||  ( M  -  ( M  -  N ) ) ) )
65imp 123 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  M ) )  ->  K  ||  ( M  -  ( M  -  N ) ) )
7 zcn 9151 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
8 zcn 9151 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
9 nncan 8083 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  -  ( M  -  N )
)  =  N )
107, 8, 9syl2an 287 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  ( M  -  N )
)  =  N )
11103adant1 1000 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  ( M  -  N ) )  =  N )
1211adantr 274 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  M ) )  ->  ( M  -  ( M  -  N ) )  =  N )
136, 12breqtrd 3986 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  M ) )  ->  K  ||  N
)
1413expr 373 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  M  ->  K  ||  N
) )
15 dvds2add 11694 . . . . . 6  |-  ( ( K  e.  ZZ  /\  ( M  -  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  ( M  -  N
)  /\  K  ||  N
)  ->  K  ||  (
( M  -  N
)  +  N ) ) )
162, 15syld3an2 1264 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  ( M  -  N )  /\  K  ||  N )  ->  K  ||  (
( M  -  N
)  +  N ) ) )
1716imp 123 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  N ) )  ->  K  ||  (
( M  -  N
)  +  N ) )
18 npcan 8063 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  -  N )  +  N
)  =  M )
197, 8, 18syl2an 287 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  -  N )  +  N
)  =  M )
20193adant1 1000 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  -  N
)  +  N )  =  M )
2120adantr 274 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  N ) )  ->  ( ( M  -  N )  +  N )  =  M )
2217, 21breqtrd 3986 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  N ) )  ->  K  ||  M
)
2322expr 373 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  N  ->  K  ||  M
) )
2414, 23impbid 128 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  M 
<->  K  ||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 2125   class class class wbr 3961  (class class class)co 5814   CCcc 7709    + caddc 7714    - cmin 8025   ZZcz 9146    || cdvds 11660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-dvds 11661
This theorem is referenced by:  dvdsadd  11703
  Copyright terms: Public domain W3C validator