Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdssub2 | Unicode version |
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.) |
Ref | Expression |
---|---|
dvdssub2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubcl 9202 | . . . . . . . 8 | |
2 | 1 | 3adant1 1000 | . . . . . . 7 |
3 | dvds2sub 11714 | . . . . . . 7 | |
4 | 2, 3 | syld3an3 1265 | . . . . . 6 |
5 | 4 | ancomsd 267 | . . . . 5 |
6 | 5 | imp 123 | . . . 4 |
7 | zcn 9166 | . . . . . . 7 | |
8 | zcn 9166 | . . . . . . 7 | |
9 | nncan 8098 | . . . . . . 7 | |
10 | 7, 8, 9 | syl2an 287 | . . . . . 6 |
11 | 10 | 3adant1 1000 | . . . . 5 |
12 | 11 | adantr 274 | . . . 4 |
13 | 6, 12 | breqtrd 3990 | . . 3 |
14 | 13 | expr 373 | . 2 |
15 | dvds2add 11713 | . . . . . 6 | |
16 | 2, 15 | syld3an2 1267 | . . . . 5 |
17 | 16 | imp 123 | . . . 4 |
18 | npcan 8078 | . . . . . . 7 | |
19 | 7, 8, 18 | syl2an 287 | . . . . . 6 |
20 | 19 | 3adant1 1000 | . . . . 5 |
21 | 20 | adantr 274 | . . . 4 |
22 | 17, 21 | breqtrd 3990 | . . 3 |
23 | 22 | expr 373 | . 2 |
24 | 14, 23 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 class class class wbr 3965 (class class class)co 5821 cc 7724 caddc 7729 cmin 8040 cz 9161 cdvds 11676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-n0 9085 df-z 9162 df-dvds 11677 |
This theorem is referenced by: dvdsadd 11722 |
Copyright terms: Public domain | W3C validator |