ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpass Unicode version

Theorem tpass 3533
Description: Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
tpass  |-  { A ,  B ,  C }  =  ( { A }  u.  { B ,  C } )

Proof of Theorem tpass
StepHypRef Expression
1 df-tp 3449 . 2  |-  { B ,  C ,  A }  =  ( { B ,  C }  u.  { A } )
2 tprot 3530 . 2  |-  { A ,  B ,  C }  =  { B ,  C ,  A }
3 uncom 3142 . 2  |-  ( { A }  u.  { B ,  C }
)  =  ( { B ,  C }  u.  { A } )
41, 2, 33eqtr4i 2118 1  |-  { A ,  B ,  C }  =  ( { A }  u.  { B ,  C } )
Colors of variables: wff set class
Syntax hints:    = wceq 1289    u. cun 2995   {csn 3441   {cpr 3442   {ctp 3443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3or 925  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-sn 3447  df-pr 3448  df-tp 3449
This theorem is referenced by:  qdassr  3535
  Copyright terms: Public domain W3C validator