ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdass Unicode version

Theorem qdass 3516
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdass  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B ,  C }  u.  { D } )

Proof of Theorem qdass
StepHypRef Expression
1 unass 3143 . 2  |-  ( ( { A ,  B }  u.  { C } )  u.  { D } )  =  ( { A ,  B }  u.  ( { C }  u.  { D } ) )
2 df-tp 3433 . . 3  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
32uneq1i 3136 . 2  |-  ( { A ,  B ,  C }  u.  { D } )  =  ( ( { A ,  B }  u.  { C } )  u.  { D } )
4 df-pr 3432 . . 3  |-  { C ,  D }  =  ( { C }  u.  { D } )
54uneq2i 3137 . 2  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B }  u.  ( { C }  u.  { D } ) )
61, 3, 53eqtr4ri 2116 1  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B ,  C }  u.  { D } )
Colors of variables: wff set class
Syntax hints:    = wceq 1287    u. cun 2984   {csn 3425   {cpr 3426   {ctp 3427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2616  df-un 2990  df-pr 3432  df-tp 3433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator