| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpass | GIF version | ||
| Description: Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| tpass | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3654 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = ({𝐵, 𝐶} ∪ {𝐴}) | |
| 2 | tprot 3739 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
| 3 | uncom 3328 | . 2 ⊢ ({𝐴} ∪ {𝐵, 𝐶}) = ({𝐵, 𝐶} ∪ {𝐴}) | |
| 4 | 1, 2, 3 | 3eqtr4i 2240 | 1 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∪ cun 3175 {csn 3646 {cpr 3647 {ctp 3648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-tp 3654 |
| This theorem is referenced by: qdassr 3744 |
| Copyright terms: Public domain | W3C validator |