ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdassr Unicode version

Theorem qdassr 3674
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdassr  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )

Proof of Theorem qdassr
StepHypRef Expression
1 unass 3279 . 2  |-  ( ( { A }  u.  { B } )  u. 
{ C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
2 df-pr 3583 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
32uneq1i 3272 . 2  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( ( { A }  u.  { B } )  u.  { C ,  D } )
4 tpass 3672 . . 3  |-  { B ,  C ,  D }  =  ( { B }  u.  { C ,  D } )
54uneq2i 3273 . 2  |-  ( { A }  u.  { B ,  C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
61, 3, 53eqtr4i 2196 1  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    u. cun 3114   {csn 3576   {cpr 3577   {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3or 969  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-tp 3584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator