ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdassr Unicode version

Theorem qdassr 3764
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdassr  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )

Proof of Theorem qdassr
StepHypRef Expression
1 unass 3361 . 2  |-  ( ( { A }  u.  { B } )  u. 
{ C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
2 df-pr 3673 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
32uneq1i 3354 . 2  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( ( { A }  u.  { B } )  u.  { C ,  D } )
4 tpass 3762 . . 3  |-  { B ,  C ,  D }  =  ( { B }  u.  { C ,  D } )
54uneq2i 3355 . 2  |-  ( { A }  u.  { B ,  C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
61, 3, 53eqtr4i 2260 1  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    u. cun 3195   {csn 3666   {cpr 3667   {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-tp 3674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator