ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdassr Unicode version

Theorem qdassr 3716
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdassr  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )

Proof of Theorem qdassr
StepHypRef Expression
1 unass 3316 . 2  |-  ( ( { A }  u.  { B } )  u. 
{ C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
2 df-pr 3625 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
32uneq1i 3309 . 2  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( ( { A }  u.  { B } )  u.  { C ,  D } )
4 tpass 3714 . . 3  |-  { B ,  C ,  D }  =  ( { B }  u.  { C ,  D } )
54uneq2i 3310 . 2  |-  ( { A }  u.  { B ,  C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
61, 3, 53eqtr4i 2224 1  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3151   {csn 3618   {cpr 3619   {ctp 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3or 981  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-tp 3626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator