Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qdassr | Unicode version |
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
qdassr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 3275 | . 2 | |
2 | df-pr 3578 | . . 3 | |
3 | 2 | uneq1i 3268 | . 2 |
4 | tpass 3667 | . . 3 | |
5 | 4 | uneq2i 3269 | . 2 |
6 | 1, 3, 5 | 3eqtr4i 2195 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1342 cun 3110 csn 3571 cpr 3572 ctp 3573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2724 df-un 3116 df-sn 3577 df-pr 3578 df-tp 3579 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |