| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | Unicode version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq2 3321 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: ifeq2 3575 tpeq3 3721 iununir 4011 unisucg 4462 relcoi1 5215 resasplitss 5457 fvun1 5647 fmptapd 5777 fvunsng 5780 fnsnsplitss 5785 tfr1onlemaccex 6436 tfrcllemaccex 6449 rdgeq1 6459 rdgivallem 6469 rdgisuc1 6472 rdgon 6474 rdg0 6475 oav2 6551 oasuc 6552 omv2 6553 omsuc 6560 fnsnsplitdc 6593 unsnfidcex 7019 undifdc 7023 fiintim 7030 ssfirab 7035 fnfi 7040 fidcenumlemr 7059 sbthlemi5 7065 sbthlemi6 7066 pm54.43 7300 fzsuc 10193 fseq1p1m1 10218 fseq1m1p1 10219 fzosplitsnm1 10340 fzosplitsn 10364 fzosplitprm1 10365 resunimafz0 10978 zfz1isolemsplit 10985 fsumm1 11760 fprodm1 11942 ennnfonelemp1 12810 ennnfonelemhdmp1 12813 ennnfonelemkh 12816 ennnfonelemhf1o 12817 ennnfonelemnn0 12826 strsetsid 12898 setscom 12905 lspun0 14220 bj-charfundcALT 15782 |
| Copyright terms: Public domain | W3C validator |