| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | Unicode version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq2 3321 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: ifeq2 3575 tpeq3 3721 iununir 4011 unisucg 4461 relcoi1 5214 resasplitss 5455 fvun1 5645 fmptapd 5775 fvunsng 5778 fnsnsplitss 5783 tfr1onlemaccex 6434 tfrcllemaccex 6447 rdgeq1 6457 rdgivallem 6467 rdgisuc1 6470 rdgon 6472 rdg0 6473 oav2 6549 oasuc 6550 omv2 6551 omsuc 6558 fnsnsplitdc 6591 unsnfidcex 7017 undifdc 7021 fiintim 7028 ssfirab 7033 fnfi 7038 fidcenumlemr 7057 sbthlemi5 7063 sbthlemi6 7064 pm54.43 7298 fzsuc 10191 fseq1p1m1 10216 fseq1m1p1 10217 fzosplitsnm1 10338 fzosplitsn 10362 fzosplitprm1 10363 resunimafz0 10976 zfz1isolemsplit 10983 fsumm1 11727 fprodm1 11909 ennnfonelemp1 12777 ennnfonelemhdmp1 12780 ennnfonelemkh 12783 ennnfonelemhf1o 12784 ennnfonelemnn0 12793 strsetsid 12865 setscom 12872 lspun0 14187 bj-charfundcALT 15745 |
| Copyright terms: Public domain | W3C validator |