ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2d Unicode version

Theorem uneq2d 3327
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq2d  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )

Proof of Theorem uneq2d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq2 3321 . 2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170
This theorem is referenced by:  ifeq2  3575  tpeq3  3721  iununir  4011  unisucg  4461  relcoi1  5214  resasplitss  5455  fvun1  5645  fmptapd  5775  fvunsng  5778  fnsnsplitss  5783  tfr1onlemaccex  6434  tfrcllemaccex  6447  rdgeq1  6457  rdgivallem  6467  rdgisuc1  6470  rdgon  6472  rdg0  6473  oav2  6549  oasuc  6550  omv2  6551  omsuc  6558  fnsnsplitdc  6591  unsnfidcex  7017  undifdc  7021  fiintim  7028  ssfirab  7033  fnfi  7038  fidcenumlemr  7057  sbthlemi5  7063  sbthlemi6  7064  pm54.43  7298  fzsuc  10191  fseq1p1m1  10216  fseq1m1p1  10217  fzosplitsnm1  10338  fzosplitsn  10362  fzosplitprm1  10363  resunimafz0  10976  zfz1isolemsplit  10983  fsumm1  11727  fprodm1  11909  ennnfonelemp1  12777  ennnfonelemhdmp1  12780  ennnfonelemkh  12783  ennnfonelemhf1o  12784  ennnfonelemnn0  12793  strsetsid  12865  setscom  12872  lspun0  14187  bj-charfundcALT  15745
  Copyright terms: Public domain W3C validator