| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | Unicode version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq2 3312 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: ifeq2 3566 tpeq3 3711 iununir 4001 unisucg 4450 relcoi1 5202 resasplitss 5440 fvun1 5630 fmptapd 5756 fvunsng 5759 fnsnsplitss 5764 tfr1onlemaccex 6415 tfrcllemaccex 6428 rdgeq1 6438 rdgivallem 6448 rdgisuc1 6451 rdgon 6453 rdg0 6454 oav2 6530 oasuc 6531 omv2 6532 omsuc 6539 fnsnsplitdc 6572 unsnfidcex 6990 undifdc 6994 fiintim 7001 ssfirab 7006 fnfi 7011 fidcenumlemr 7030 sbthlemi5 7036 sbthlemi6 7037 pm54.43 7269 fzsuc 10161 fseq1p1m1 10186 fseq1m1p1 10187 fzosplitsnm1 10302 fzosplitsn 10326 fzosplitprm1 10327 resunimafz0 10940 zfz1isolemsplit 10947 fsumm1 11598 fprodm1 11780 ennnfonelemp1 12648 ennnfonelemhdmp1 12651 ennnfonelemkh 12654 ennnfonelemhf1o 12655 ennnfonelemnn0 12664 strsetsid 12736 setscom 12743 lspun0 14057 bj-charfundcALT 15539 |
| Copyright terms: Public domain | W3C validator |