| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | Unicode version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq2 3352 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: ifeq2 3606 tpeq3 3754 iununir 4049 unisucg 4505 relcoi1 5260 resasplitss 5505 fvun1 5700 fmptapd 5830 fvunsng 5833 fnsnsplitss 5838 tfr1onlemaccex 6494 tfrcllemaccex 6507 rdgeq1 6517 rdgivallem 6527 rdgisuc1 6530 rdgon 6532 rdg0 6533 oav2 6609 oasuc 6610 omv2 6611 omsuc 6618 fnsnsplitdc 6651 unsnfidcex 7082 undifdc 7086 fiintim 7093 ssfirab 7098 fnfi 7103 fidcenumlemr 7122 sbthlemi5 7128 sbthlemi6 7129 pm54.43 7363 fzsuc 10265 fseq1p1m1 10290 fseq1m1p1 10291 fzosplitsnm1 10415 fzosplitsn 10439 fzosplitprm1 10440 resunimafz0 11053 zfz1isolemsplit 11060 fsumm1 11927 fprodm1 12109 ennnfonelemp1 12977 ennnfonelemhdmp1 12980 ennnfonelemkh 12983 ennnfonelemhf1o 12984 ennnfonelemnn0 12993 strsetsid 13065 setscom 13072 lspun0 14389 bj-charfundcALT 16172 |
| Copyright terms: Public domain | W3C validator |