ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2d Unicode version

Theorem uneq2d 3335
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq2d  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )

Proof of Theorem uneq2d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq2 3329 . 2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178
This theorem is referenced by:  ifeq2  3583  tpeq3  3731  iununir  4025  unisucg  4479  relcoi1  5233  resasplitss  5477  fvun1  5668  fmptapd  5798  fvunsng  5801  fnsnsplitss  5806  tfr1onlemaccex  6457  tfrcllemaccex  6470  rdgeq1  6480  rdgivallem  6490  rdgisuc1  6493  rdgon  6495  rdg0  6496  oav2  6572  oasuc  6573  omv2  6574  omsuc  6581  fnsnsplitdc  6614  unsnfidcex  7043  undifdc  7047  fiintim  7054  ssfirab  7059  fnfi  7064  fidcenumlemr  7083  sbthlemi5  7089  sbthlemi6  7090  pm54.43  7324  fzsuc  10226  fseq1p1m1  10251  fseq1m1p1  10252  fzosplitsnm1  10375  fzosplitsn  10399  fzosplitprm1  10400  resunimafz0  11013  zfz1isolemsplit  11020  fsumm1  11842  fprodm1  12024  ennnfonelemp1  12892  ennnfonelemhdmp1  12895  ennnfonelemkh  12898  ennnfonelemhf1o  12899  ennnfonelemnn0  12908  strsetsid  12980  setscom  12987  lspun0  14302  bj-charfundcALT  15944
  Copyright terms: Public domain W3C validator