ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2d Unicode version

Theorem uneq2d 3290
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq2d  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )

Proof of Theorem uneq2d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq2 3284 . 2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    u. cun 3128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134
This theorem is referenced by:  ifeq2  3539  tpeq3  3681  iununir  3971  unisucg  4415  relcoi1  5161  resasplitss  5396  fvun1  5583  fmptapd  5708  fvunsng  5711  fnsnsplitss  5716  tfr1onlemaccex  6349  tfrcllemaccex  6362  rdgeq1  6372  rdgivallem  6382  rdgisuc1  6385  rdgon  6387  rdg0  6388  oav2  6464  oasuc  6465  omv2  6466  omsuc  6473  fnsnsplitdc  6506  unsnfidcex  6919  undifdc  6923  fiintim  6928  ssfirab  6933  fnfi  6936  fidcenumlemr  6954  sbthlemi5  6960  sbthlemi6  6961  pm54.43  7189  fzsuc  10069  fseq1p1m1  10094  fseq1m1p1  10095  fzosplitsnm1  10209  fzosplitsn  10233  fzosplitprm1  10234  resunimafz0  10811  zfz1isolemsplit  10818  fsumm1  11424  fprodm1  11606  ennnfonelemp1  12407  ennnfonelemhdmp1  12410  ennnfonelemkh  12413  ennnfonelemhf1o  12414  ennnfonelemnn0  12423  strsetsid  12495  setscom  12502  bj-charfundcALT  14564
  Copyright terms: Public domain W3C validator