ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2d Unicode version

Theorem uneq2d 3314
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq2d  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )

Proof of Theorem uneq2d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq2 3308 . 2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158
This theorem is referenced by:  ifeq2  3562  tpeq3  3707  iununir  3997  unisucg  4446  relcoi1  5198  resasplitss  5434  fvun1  5624  fmptapd  5750  fvunsng  5753  fnsnsplitss  5758  tfr1onlemaccex  6403  tfrcllemaccex  6416  rdgeq1  6426  rdgivallem  6436  rdgisuc1  6439  rdgon  6441  rdg0  6442  oav2  6518  oasuc  6519  omv2  6520  omsuc  6527  fnsnsplitdc  6560  unsnfidcex  6978  undifdc  6982  fiintim  6987  ssfirab  6992  fnfi  6997  fidcenumlemr  7016  sbthlemi5  7022  sbthlemi6  7023  pm54.43  7252  fzsuc  10138  fseq1p1m1  10163  fseq1m1p1  10164  fzosplitsnm1  10279  fzosplitsn  10303  fzosplitprm1  10304  resunimafz0  10905  zfz1isolemsplit  10912  fsumm1  11562  fprodm1  11744  ennnfonelemp1  12566  ennnfonelemhdmp1  12569  ennnfonelemkh  12572  ennnfonelemhf1o  12573  ennnfonelemnn0  12582  strsetsid  12654  setscom  12661  lspun0  13924  bj-charfundcALT  15371
  Copyright terms: Public domain W3C validator