| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | Unicode version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq2 3329 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: ifeq2 3583 tpeq3 3731 iununir 4025 unisucg 4479 relcoi1 5233 resasplitss 5477 fvun1 5668 fmptapd 5798 fvunsng 5801 fnsnsplitss 5806 tfr1onlemaccex 6457 tfrcllemaccex 6470 rdgeq1 6480 rdgivallem 6490 rdgisuc1 6493 rdgon 6495 rdg0 6496 oav2 6572 oasuc 6573 omv2 6574 omsuc 6581 fnsnsplitdc 6614 unsnfidcex 7043 undifdc 7047 fiintim 7054 ssfirab 7059 fnfi 7064 fidcenumlemr 7083 sbthlemi5 7089 sbthlemi6 7090 pm54.43 7324 fzsuc 10226 fseq1p1m1 10251 fseq1m1p1 10252 fzosplitsnm1 10375 fzosplitsn 10399 fzosplitprm1 10400 resunimafz0 11013 zfz1isolemsplit 11020 fsumm1 11842 fprodm1 12024 ennnfonelemp1 12892 ennnfonelemhdmp1 12895 ennnfonelemkh 12898 ennnfonelemhf1o 12899 ennnfonelemnn0 12908 strsetsid 12980 setscom 12987 lspun0 14302 bj-charfundcALT 15944 |
| Copyright terms: Public domain | W3C validator |