![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq2d | Unicode version |
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uneq2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | uneq2 3307 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 |
This theorem is referenced by: ifeq2 3561 tpeq3 3706 iununir 3996 unisucg 4445 relcoi1 5197 resasplitss 5433 fvun1 5623 fmptapd 5749 fvunsng 5752 fnsnsplitss 5757 tfr1onlemaccex 6401 tfrcllemaccex 6414 rdgeq1 6424 rdgivallem 6434 rdgisuc1 6437 rdgon 6439 rdg0 6440 oav2 6516 oasuc 6517 omv2 6518 omsuc 6525 fnsnsplitdc 6558 unsnfidcex 6976 undifdc 6980 fiintim 6985 ssfirab 6990 fnfi 6995 fidcenumlemr 7014 sbthlemi5 7020 sbthlemi6 7021 pm54.43 7250 fzsuc 10135 fseq1p1m1 10160 fseq1m1p1 10161 fzosplitsnm1 10276 fzosplitsn 10300 fzosplitprm1 10301 resunimafz0 10902 zfz1isolemsplit 10909 fsumm1 11559 fprodm1 11741 ennnfonelemp1 12563 ennnfonelemhdmp1 12566 ennnfonelemkh 12569 ennnfonelemhf1o 12570 ennnfonelemnn0 12579 strsetsid 12651 setscom 12658 lspun0 13921 bj-charfundcALT 15301 |
Copyright terms: Public domain | W3C validator |