ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2d Unicode version

Theorem uneq2d 3327
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq2d  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )

Proof of Theorem uneq2d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq2 3321 . 2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  u.  A
)  =  ( C  u.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170
This theorem is referenced by:  ifeq2  3575  tpeq3  3721  iununir  4011  unisucg  4462  relcoi1  5215  resasplitss  5457  fvun1  5647  fmptapd  5777  fvunsng  5780  fnsnsplitss  5785  tfr1onlemaccex  6436  tfrcllemaccex  6449  rdgeq1  6459  rdgivallem  6469  rdgisuc1  6472  rdgon  6474  rdg0  6475  oav2  6551  oasuc  6552  omv2  6553  omsuc  6560  fnsnsplitdc  6593  unsnfidcex  7019  undifdc  7023  fiintim  7030  ssfirab  7035  fnfi  7040  fidcenumlemr  7059  sbthlemi5  7065  sbthlemi6  7066  pm54.43  7300  fzsuc  10193  fseq1p1m1  10218  fseq1m1p1  10219  fzosplitsnm1  10340  fzosplitsn  10364  fzosplitprm1  10365  resunimafz0  10978  zfz1isolemsplit  10985  fsumm1  11760  fprodm1  11942  ennnfonelemp1  12810  ennnfonelemhdmp1  12813  ennnfonelemkh  12816  ennnfonelemhf1o  12817  ennnfonelemnn0  12826  strsetsid  12898  setscom  12905  lspun0  14220  bj-charfundcALT  15782
  Copyright terms: Public domain W3C validator