ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpeq2 Unicode version

Theorem tpeq2 3720
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq2  |-  ( A  =  B  ->  { C ,  A ,  D }  =  { C ,  B ,  D } )

Proof of Theorem tpeq2
StepHypRef Expression
1 preq2 3711 . . 3  |-  ( A  =  B  ->  { C ,  A }  =  { C ,  B }
)
21uneq1d 3326 . 2  |-  ( A  =  B  ->  ( { C ,  A }  u.  { D } )  =  ( { C ,  B }  u.  { D } ) )
3 df-tp 3641 . 2  |-  { C ,  A ,  D }  =  ( { C ,  A }  u.  { D } )
4 df-tp 3641 . 2  |-  { C ,  B ,  D }  =  ( { C ,  B }  u.  { D } )
52, 3, 43eqtr4g 2263 1  |-  ( A  =  B  ->  { C ,  A ,  D }  =  { C ,  B ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3164   {csn 3633   {cpr 3634   {ctp 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-tp 3641
This theorem is referenced by:  tpeq2d  3723  fztpval  10205
  Copyright terms: Public domain W3C validator