ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpeq2 Unicode version

Theorem tpeq2 3676
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq2  |-  ( A  =  B  ->  { C ,  A ,  D }  =  { C ,  B ,  D } )

Proof of Theorem tpeq2
StepHypRef Expression
1 preq2 3667 . . 3  |-  ( A  =  B  ->  { C ,  A }  =  { C ,  B }
)
21uneq1d 3286 . 2  |-  ( A  =  B  ->  ( { C ,  A }  u.  { D } )  =  ( { C ,  B }  u.  { D } ) )
3 df-tp 3597 . 2  |-  { C ,  A ,  D }  =  ( { C ,  A }  u.  { D } )
4 df-tp 3597 . 2  |-  { C ,  B ,  D }  =  ( { C ,  B }  u.  { D } )
52, 3, 43eqtr4g 2233 1  |-  ( A  =  B  ->  { C ,  A ,  D }  =  { C ,  B ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    u. cun 3125   {csn 3589   {cpr 3590   {ctp 3591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-tp 3597
This theorem is referenced by:  tpeq2d  3679  fztpval  10053
  Copyright terms: Public domain W3C validator