ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm13 Unicode version

Theorem tpidm13 3722
Description: Unordered triple  { A ,  B ,  A } is just an overlong way to write  { A ,  B }. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm13  |-  { A ,  B ,  A }  =  { A ,  B }

Proof of Theorem tpidm13
StepHypRef Expression
1 tprot 3715 . 2  |-  { A ,  A ,  B }  =  { A ,  B ,  A }
2 tpidm12 3721 . 2  |-  { A ,  A ,  B }  =  { A ,  B }
31, 2eqtr3i 2219 1  |-  { A ,  B ,  A }  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {cpr 3623   {ctp 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3or 981  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-tp 3630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator