ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm13 GIF version

Theorem tpidm13 3766
Description: Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm13 {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}

Proof of Theorem tpidm13
StepHypRef Expression
1 tprot 3759 . 2 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐴}
2 tpidm12 3765 . 2 {𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
31, 2eqtr3i 2252 1 {𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  {cpr 3667  {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-tp 3674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator