![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 |
![]() ![]() ![]() ![]() |
eqtr3i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr3i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2181 |
. 2
![]() ![]() ![]() ![]() |
3 | eqtr3i.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtri 2198 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: 3eqtr3i 2206 3eqtr3ri 2207 unundi 3296 unundir 3297 inindi 3352 inindir 3353 difun1 3395 difabs 3399 notab 3405 dfrab2 3410 dif0 3493 difdifdirss 3507 tpidm13 3692 intmin2 3870 univ 4476 iunxpconst 4686 dmres 4928 opabresid 4960 rnresi 4985 cnvcnv 5081 rnresv 5088 cnvsn0 5097 cnvsn 5111 resdmres 5120 coi2 5145 coires1 5146 dfdm2 5163 isarep2 5303 ssimaex 5577 fnreseql 5626 fmptpr 5708 idref 5757 mpompt 5966 caov31 6063 xpexgALT 6133 cnvoprab 6234 frec0g 6397 unfiin 6924 xpfi 6928 endjusym 7094 halfnqq 7408 caucvgprlemm 7666 caucvgprprlemmu 7693 caucvgsr 7800 mvlladdi 8174 8th4div3 9137 nneoor 9354 nummac 9427 numadd 9429 numaddc 9430 nummul1c 9431 decbin0 9522 infrenegsupex 9593 iseqvalcbv 10456 m1expcl2 10541 facnn 10706 fac0 10707 4bc3eq4 10752 fihasheq0 10772 resqrexlemcalc1 11022 sqrt1 11054 sqrt4 11055 sqrt9 11056 infxrnegsupex 11270 isumss2 11400 geo2sum2 11522 geoihalfsum 11529 sin0 11736 efival 11739 ef01bndlem 11763 cos2bnd 11767 sin4lt0 11773 flodddiv4 11938 2prm 12126 znnen 12398 ennnfonelemhf1o 12413 setsslid 12512 ressressg 12533 metreslem 13850 retopbas 13993 sinhalfpilem 14182 sincos6thpi 14233 sincos3rdpi 14234 lgsdir2lem3 14401 lgseisenlem1 14420 lgseisenlem2 14421 2lgsoddprmlem2 14424 |
Copyright terms: Public domain | W3C validator |