Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 | |
eqtr3i.2 |
Ref | Expression |
---|---|
eqtr3i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 | . . 3 | |
2 | 1 | eqcomi 2174 | . 2 |
3 | eqtr3i.2 | . 2 | |
4 | 2, 3 | eqtri 2191 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: 3eqtr3i 2199 3eqtr3ri 2200 unundi 3288 unundir 3289 inindi 3344 inindir 3345 difun1 3387 difabs 3391 notab 3397 dfrab2 3402 dif0 3485 difdifdirss 3499 tpidm13 3683 intmin2 3857 univ 4461 iunxpconst 4671 dmres 4912 opabresid 4944 rnresi 4968 cnvcnv 5063 rnresv 5070 cnvsn0 5079 cnvsn 5093 resdmres 5102 coi2 5127 coires1 5128 dfdm2 5145 isarep2 5285 ssimaex 5557 fnreseql 5606 fmptpr 5688 idref 5736 mpompt 5945 caov31 6042 xpexgALT 6112 cnvoprab 6213 frec0g 6376 unfiin 6903 xpfi 6907 endjusym 7073 halfnqq 7372 caucvgprlemm 7630 caucvgprprlemmu 7657 caucvgsr 7764 mvlladdi 8137 8th4div3 9097 nneoor 9314 nummac 9387 numadd 9389 numaddc 9390 nummul1c 9391 decbin0 9482 infrenegsupex 9553 iseqvalcbv 10413 m1expcl2 10498 facnn 10661 fac0 10662 4bc3eq4 10707 fihasheq0 10728 resqrexlemcalc1 10978 sqrt1 11010 sqrt4 11011 sqrt9 11012 infxrnegsupex 11226 isumss2 11356 geo2sum2 11478 geoihalfsum 11485 sin0 11692 efival 11695 ef01bndlem 11719 cos2bnd 11723 sin4lt0 11729 flodddiv4 11893 2prm 12081 znnen 12353 ennnfonelemhf1o 12368 setsslid 12466 metreslem 13174 retopbas 13317 sinhalfpilem 13506 sincos6thpi 13557 sincos3rdpi 13558 lgsdir2lem3 13725 |
Copyright terms: Public domain | W3C validator |