Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 | |
eqtr3i.2 |
Ref | Expression |
---|---|
eqtr3i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 | . . 3 | |
2 | 1 | eqcomi 2179 | . 2 |
3 | eqtr3i.2 | . 2 | |
4 | 2, 3 | eqtri 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: 3eqtr3i 2204 3eqtr3ri 2205 unundi 3294 unundir 3295 inindi 3350 inindir 3351 difun1 3393 difabs 3397 notab 3403 dfrab2 3408 dif0 3491 difdifdirss 3505 tpidm13 3689 intmin2 3866 univ 4470 iunxpconst 4680 dmres 4921 opabresid 4953 rnresi 4978 cnvcnv 5073 rnresv 5080 cnvsn0 5089 cnvsn 5103 resdmres 5112 coi2 5137 coires1 5138 dfdm2 5155 isarep2 5295 ssimaex 5569 fnreseql 5618 fmptpr 5700 idref 5748 mpompt 5957 caov31 6054 xpexgALT 6124 cnvoprab 6225 frec0g 6388 unfiin 6915 xpfi 6919 endjusym 7085 halfnqq 7384 caucvgprlemm 7642 caucvgprprlemmu 7669 caucvgsr 7776 mvlladdi 8149 8th4div3 9109 nneoor 9326 nummac 9399 numadd 9401 numaddc 9402 nummul1c 9403 decbin0 9494 infrenegsupex 9565 iseqvalcbv 10425 m1expcl2 10510 facnn 10673 fac0 10674 4bc3eq4 10719 fihasheq0 10739 resqrexlemcalc1 10989 sqrt1 11021 sqrt4 11022 sqrt9 11023 infxrnegsupex 11237 isumss2 11367 geo2sum2 11489 geoihalfsum 11496 sin0 11703 efival 11706 ef01bndlem 11730 cos2bnd 11734 sin4lt0 11740 flodddiv4 11904 2prm 12092 znnen 12364 ennnfonelemhf1o 12379 setsslid 12477 metreslem 13431 retopbas 13574 sinhalfpilem 13763 sincos6thpi 13814 sincos3rdpi 13815 lgsdir2lem3 13982 |
Copyright terms: Public domain | W3C validator |