![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 |
![]() ![]() ![]() ![]() |
eqtr3i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr3i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
3 | eqtr3i.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtri 2214 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtr3i 2222 3eqtr3ri 2223 unundi 3321 unundir 3322 inindi 3377 inindir 3378 difun1 3420 difabs 3424 notab 3430 dfrab2 3435 dif0 3518 difdifdirss 3532 tpidm13 3719 intmin2 3897 univ 4508 iunxpconst 4720 dmres 4964 rnresi 5023 cnvcnv 5119 rnresv 5126 cnvsn0 5135 cnvsn 5149 resdmres 5158 coi2 5183 coires1 5184 dfdm2 5201 isarep2 5342 ssimaex 5619 fnreseql 5669 fmptpr 5751 idref 5800 mpompt 6011 caov31 6110 xpexgALT 6187 cnvoprab 6289 frec0g 6452 unfiin 6984 xpfi 6988 endjusym 7157 halfnqq 7472 caucvgprlemm 7730 caucvgprprlemmu 7757 caucvgsr 7864 mvlladdi 8239 8th4div3 9204 nneoor 9422 nummac 9495 numadd 9497 numaddc 9498 nummul1c 9499 decbin0 9590 infrenegsupex 9662 xnn0nnen 10511 iseqvalcbv 10533 m1expcl2 10635 facnn 10801 fac0 10802 4bc3eq4 10847 fihasheq0 10867 resqrexlemcalc1 11161 sqrt1 11193 sqrt4 11194 sqrt9 11195 infxrnegsupex 11409 isumss2 11539 geo2sum2 11661 geoihalfsum 11668 sin0 11875 efival 11878 ef01bndlem 11902 cos2bnd 11906 sin4lt0 11913 flodddiv4 12078 2prm 12268 znnen 12558 ennnfonelemhf1o 12573 setsslid 12672 ressressg 12696 metreslem 14559 retopbas 14702 cnfldms 14715 sinhalfpilem 14967 sincos6thpi 15018 sincos3rdpi 15019 lgsdir2lem3 15187 lgseisenlem1 15227 lgseisenlem2 15228 lgsquadlem1 15234 lgsquadlem2 15235 2lgsoddprmlem2 15263 |
Copyright terms: Public domain | W3C validator |