![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 |
![]() ![]() ![]() ![]() |
eqtr3i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr3i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
3 | eqtr3i.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtri 2214 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtr3i 2222 3eqtr3ri 2223 unundi 3320 unundir 3321 inindi 3376 inindir 3377 difun1 3419 difabs 3423 notab 3429 dfrab2 3434 dif0 3517 difdifdirss 3531 tpidm13 3718 intmin2 3896 univ 4507 iunxpconst 4719 dmres 4963 rnresi 5022 cnvcnv 5118 rnresv 5125 cnvsn0 5134 cnvsn 5148 resdmres 5157 coi2 5182 coires1 5183 dfdm2 5200 isarep2 5341 ssimaex 5618 fnreseql 5668 fmptpr 5750 idref 5799 mpompt 6010 caov31 6108 xpexgALT 6185 cnvoprab 6287 frec0g 6450 unfiin 6982 xpfi 6986 endjusym 7155 halfnqq 7470 caucvgprlemm 7728 caucvgprprlemmu 7755 caucvgsr 7862 mvlladdi 8237 8th4div3 9201 nneoor 9419 nummac 9492 numadd 9494 numaddc 9495 nummul1c 9496 decbin0 9587 infrenegsupex 9659 xnn0nnen 10508 iseqvalcbv 10530 m1expcl2 10632 facnn 10798 fac0 10799 4bc3eq4 10844 fihasheq0 10864 resqrexlemcalc1 11158 sqrt1 11190 sqrt4 11191 sqrt9 11192 infxrnegsupex 11406 isumss2 11536 geo2sum2 11658 geoihalfsum 11665 sin0 11872 efival 11875 ef01bndlem 11899 cos2bnd 11903 sin4lt0 11910 flodddiv4 12075 2prm 12265 znnen 12555 ennnfonelemhf1o 12570 setsslid 12669 ressressg 12693 mpocnfldadd 14053 mpocnfldmul 14055 metreslem 14548 retopbas 14691 sinhalfpilem 14926 sincos6thpi 14977 sincos3rdpi 14978 lgsdir2lem3 15146 lgseisenlem1 15186 lgseisenlem2 15187 lgsquadlem1 15191 2lgsoddprmlem2 15194 |
Copyright terms: Public domain | W3C validator |