| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| eqtr3i.1 |
|
| eqtr3i.2 |
|
| Ref | Expression |
|---|---|
| eqtr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3i.1 |
. . 3
| |
| 2 | 1 | eqcomi 2209 |
. 2
|
| 3 | eqtr3i.2 |
. 2
| |
| 4 | 2, 3 | eqtri 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtr3i 2234 3eqtr3ri 2235 unundi 3334 unundir 3335 inindi 3390 inindir 3391 difun1 3433 difabs 3437 notab 3443 dfrab2 3448 dif0 3531 difdifdirss 3545 tpidm13 3733 intmin2 3911 univ 4524 iunxpconst 4736 dmres 4981 rnresi 5040 cnvcnv 5136 rnresv 5143 cnvsn0 5152 cnvsn 5166 resdmres 5175 coi2 5200 coires1 5201 dfdm2 5218 isarep2 5362 ssimaex 5642 fnreseql 5692 fmptpr 5778 idref 5827 mpompt 6039 caov31 6138 xpexgALT 6220 cnvoprab 6322 frec0g 6485 unfiin 7025 xpfi 7031 endjusym 7200 halfnqq 7525 caucvgprlemm 7783 caucvgprprlemmu 7810 caucvgsr 7917 mvlladdi 8292 8th4div3 9258 nneoor 9477 nummac 9550 numadd 9552 numaddc 9553 nummul1c 9554 decbin0 9645 infrenegsupex 9717 xnn0nnen 10584 iseqvalcbv 10606 m1expcl2 10708 facnn 10874 fac0 10875 4bc3eq4 10920 fihasheq0 10940 resqrexlemcalc1 11358 sqrt1 11390 sqrt4 11391 sqrt9 11392 infxrnegsupex 11607 isumss2 11737 geo2sum2 11859 geoihalfsum 11866 sin0 12073 efival 12076 ef01bndlem 12100 cos2bnd 12104 sin4lt0 12111 flodddiv4 12280 2prm 12482 dec5dvds 12768 modxai 12772 mod2xi 12773 gcdi 12776 numexp2x 12781 decsplit 12785 znnen 12802 ennnfonelemhf1o 12817 setsslid 12916 ressressg 12940 metreslem 14885 retopbas 15028 cnfldms 15041 sinhalfpilem 15296 sincos6thpi 15347 sincos3rdpi 15348 lgsdir2lem3 15540 lgseisenlem1 15580 lgseisenlem2 15581 lgsquadlem1 15587 lgsquadlem2 15588 2lgsoddprmlem2 15616 |
| Copyright terms: Public domain | W3C validator |