| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3i | Unicode version | ||
| Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| eqtr3i.1 |
|
| eqtr3i.2 |
|
| Ref | Expression |
|---|---|
| eqtr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3i.1 |
. . 3
| |
| 2 | 1 | eqcomi 2233 |
. 2
|
| 3 | eqtr3i.2 |
. 2
| |
| 4 | 2, 3 | eqtri 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: 3eqtr3i 2258 3eqtr3ri 2259 unundi 3365 unundir 3366 inindi 3421 inindir 3422 difun1 3464 difabs 3468 notab 3474 dfrab2 3479 dif0 3562 difdifdirss 3576 tpidm13 3766 intmin2 3949 univ 4567 iunxpconst 4779 dmres 5026 rnresi 5085 cnvcnv 5181 rnresv 5188 cnvsn0 5197 cnvsn 5211 resdmres 5220 coi2 5245 coires1 5246 dfdm2 5263 isarep2 5408 ssimaex 5695 fnreseql 5745 fmptpr 5831 idref 5880 mpompt 6096 caov31 6195 xpexgALT 6278 cnvoprab 6380 frec0g 6543 unfiin 7088 xpfi 7094 endjusym 7263 halfnqq 7597 caucvgprlemm 7855 caucvgprprlemmu 7882 caucvgsr 7989 mvlladdi 8364 8th4div3 9330 nneoor 9549 nummac 9622 numadd 9624 numaddc 9625 nummul1c 9626 decbin0 9717 infrenegsupex 9789 xnn0nnen 10659 iseqvalcbv 10681 m1expcl2 10783 facnn 10949 fac0 10950 4bc3eq4 10995 fihasheq0 11015 resqrexlemcalc1 11525 sqrt1 11557 sqrt4 11558 sqrt9 11559 infxrnegsupex 11774 isumss2 11904 geo2sum2 12026 geoihalfsum 12033 sin0 12240 efival 12243 ef01bndlem 12267 cos2bnd 12271 sin4lt0 12278 flodddiv4 12447 2prm 12649 dec5dvds 12935 modxai 12939 mod2xi 12940 gcdi 12943 numexp2x 12948 decsplit 12952 znnen 12969 ennnfonelemhf1o 12984 setsslid 13083 ressressg 13108 metreslem 15054 retopbas 15197 cnfldms 15210 sinhalfpilem 15465 sincos6thpi 15516 sincos3rdpi 15517 lgsdir2lem3 15709 lgseisenlem1 15749 lgseisenlem2 15750 lgsquadlem1 15756 lgsquadlem2 15757 2lgsoddprmlem2 15785 |
| Copyright terms: Public domain | W3C validator |