ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid1g Unicode version

Theorem prid1g 3770
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid1g  |-  ( A  e.  V  ->  A  e.  { A ,  B } )

Proof of Theorem prid1g
StepHypRef Expression
1 eqid 2229 . . 3  |-  A  =  A
21orci 736 . 2  |-  ( A  =  A  \/  A  =  B )
3 elprg 3686 . 2  |-  ( A  e.  V  ->  ( A  e.  { A ,  B }  <->  ( A  =  A  \/  A  =  B ) ) )
42, 3mpbiri 168 1  |-  ( A  e.  V  ->  A  e.  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  prid2g  3771  prid1  3772  preqr1g  3843  opth1  4321  en2lp  4645  acexmidlemcase  5995  pw2f1odclem  6991  en2eqpr  7065  m1expcl2  10778  maxabslemval  11714  xrmaxiflemval  11756  xrmaxaddlem  11766  2strbasg  13148  2strbas1g  13151  coseq0negpitopi  15504  structvtxval  15834  umgrnloopv  15908  umgredgprv  15909  umgrpredgv  15939  uhgr2edg  15998  umgrvad2edg  16003
  Copyright terms: Public domain W3C validator