| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1g | Unicode version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | 1 | orci 736 |
. 2
|
| 3 | elprg 3686 |
. 2
| |
| 4 | 2, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prid2g 3771 prid1 3772 preqr1g 3843 opth1 4321 en2lp 4645 acexmidlemcase 5995 pw2f1odclem 6991 en2eqpr 7065 m1expcl2 10778 maxabslemval 11714 xrmaxiflemval 11756 xrmaxaddlem 11766 2strbasg 13148 2strbas1g 13151 coseq0negpitopi 15504 structvtxval 15834 umgrnloopv 15908 umgredgprv 15909 umgrpredgv 15939 uhgr2edg 15998 umgrvad2edg 16003 |
| Copyright terms: Public domain | W3C validator |