Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prid1g | Unicode version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid1g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . . 3 | |
2 | 1 | orci 721 | . 2 |
3 | elprg 3580 | . 2 | |
4 | 2, 3 | mpbiri 167 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1335 wcel 2128 cpr 3561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 |
This theorem is referenced by: prid2g 3664 prid1 3665 preqr1g 3729 opth1 4195 en2lp 4511 acexmidlemcase 5813 en2eqpr 6845 m1expcl2 10423 maxabslemval 11090 xrmaxiflemval 11129 xrmaxaddlem 11139 2strbasg 12251 2strbas1g 12254 coseq0negpitopi 13117 |
Copyright terms: Public domain | W3C validator |