| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1g | Unicode version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . 3
| |
| 2 | 1 | orci 733 |
. 2
|
| 3 | elprg 3663 |
. 2
| |
| 4 | 2, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: prid2g 3748 prid1 3749 preqr1g 3820 opth1 4298 en2lp 4620 acexmidlemcase 5962 pw2f1odclem 6956 en2eqpr 7030 m1expcl2 10743 maxabslemval 11634 xrmaxiflemval 11676 xrmaxaddlem 11686 2strbasg 13067 2strbas1g 13070 coseq0negpitopi 15423 structvtxval 15753 umgrnloopvv 15825 umgrpredgv 15851 |
| Copyright terms: Public domain | W3C validator |