ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid1g Unicode version

Theorem prid1g 3687
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid1g  |-  ( A  e.  V  ->  A  e.  { A ,  B } )

Proof of Theorem prid1g
StepHypRef Expression
1 eqid 2170 . . 3  |-  A  =  A
21orci 726 . 2  |-  ( A  =  A  \/  A  =  B )
3 elprg 3603 . 2  |-  ( A  e.  V  ->  ( A  e.  { A ,  B }  <->  ( A  =  A  \/  A  =  B ) ) )
42, 3mpbiri 167 1  |-  ( A  e.  V  ->  A  e.  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    = wceq 1348    e. wcel 2141   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590
This theorem is referenced by:  prid2g  3688  prid1  3689  preqr1g  3753  opth1  4221  en2lp  4538  acexmidlemcase  5848  en2eqpr  6885  m1expcl2  10498  maxabslemval  11172  xrmaxiflemval  11213  xrmaxaddlem  11223  2strbasg  12519  2strbas1g  12522  coseq0negpitopi  13551
  Copyright terms: Public domain W3C validator