| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1g | Unicode version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . 3
| |
| 2 | 1 | orci 733 |
. 2
|
| 3 | elprg 3653 |
. 2
| |
| 4 | 2, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: prid2g 3738 prid1 3739 preqr1g 3807 opth1 4280 en2lp 4602 acexmidlemcase 5939 pw2f1odclem 6931 en2eqpr 7004 m1expcl2 10706 maxabslemval 11519 xrmaxiflemval 11561 xrmaxaddlem 11571 2strbasg 12952 2strbas1g 12955 coseq0negpitopi 15308 structvtxval 15636 |
| Copyright terms: Public domain | W3C validator |