![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tppreq3 | GIF version |
Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.) |
Ref | Expression |
---|---|
tppreq3 | ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpeq3 3680 | . . 3 ⊢ (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵}) | |
2 | 1 | eqcoms 2180 | . 2 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵, 𝐵}) |
3 | tpidm23 3693 | . 2 ⊢ {𝐴, 𝐵, 𝐵} = {𝐴, 𝐵} | |
4 | 2, 3 | eqtrdi 2226 | 1 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 {cpr 3593 {ctp 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 df-tp 3600 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |