ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trel3 Unicode version

Theorem trel3 4190
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
trel3  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )

Proof of Theorem trel3
StepHypRef Expression
1 3anass 1006 . . 3  |-  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  <->  ( B  e.  C  /\  ( C  e.  D  /\  D  e.  A
) ) )
2 trel 4189 . . . 4  |-  ( Tr  A  ->  ( ( C  e.  D  /\  D  e.  A )  ->  C  e.  A ) )
32anim2d 337 . . 3  |-  ( Tr  A  ->  ( ( B  e.  C  /\  ( C  e.  D  /\  D  e.  A
) )  ->  ( B  e.  C  /\  C  e.  A )
) )
41, 3biimtrid 152 . 2  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  ( B  e.  C  /\  C  e.  A
) ) )
5 trel 4189 . 2  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A )  ->  B  e.  A ) )
64, 5syld 45 1  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    e. wcel 2200   Tr wtr 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-uni 3889  df-tr 4183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator