ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trss Unicode version

Theorem trss 4140
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
trss  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )

Proof of Theorem trss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
2 sseq1 3206 . . . . 5  |-  ( x  =  B  ->  (
x  C_  A  <->  B  C_  A
) )
31, 2imbi12d 234 . . . 4  |-  ( x  =  B  ->  (
( x  e.  A  ->  x  C_  A )  <->  ( B  e.  A  ->  B  C_  A ) ) )
43imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( Tr  A  -> 
( x  e.  A  ->  x  C_  A )
)  <->  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A )
) ) )
5 dftr3 4135 . . . 4  |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
6 rsp 2544 . . . 4  |-  ( A. x  e.  A  x  C_  A  ->  ( x  e.  A  ->  x  C_  A ) )
75, 6sylbi 121 . . 3  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
84, 7vtoclg 2824 . 2  |-  ( B  e.  A  ->  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) ) )
98pm2.43b 52 1  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   Tr wtr 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132
This theorem is referenced by:  trin  4141  triun  4144  trintssm  4147  tz7.2  4389  ordelss  4414  trsucss  4458  ordsucss  4540  ctinf  12647
  Copyright terms: Public domain W3C validator