Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > trss | Unicode version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
trss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . . . 5 | |
2 | sseq1 3165 | . . . . 5 | |
3 | 1, 2 | imbi12d 233 | . . . 4 |
4 | 3 | imbi2d 229 | . . 3 |
5 | dftr3 4084 | . . . 4 | |
6 | rsp 2513 | . . . 4 | |
7 | 5, 6 | sylbi 120 | . . 3 |
8 | 4, 7 | vtoclg 2786 | . 2 |
9 | 8 | pm2.43b 52 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wral 2444 wss 3116 wtr 4080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 |
This theorem is referenced by: trin 4090 triun 4093 trintssm 4096 tz7.2 4332 ordelss 4357 trsucss 4401 ordsucss 4481 ctinf 12363 |
Copyright terms: Public domain | W3C validator |