Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  trss Unicode version

Theorem trss 4035
 Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
trss

Proof of Theorem trss
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq1 2202 . . . . 5
2 sseq1 3120 . . . . 5
31, 2imbi12d 233 . . . 4
43imbi2d 229 . . 3
5 dftr3 4030 . . . 4
6 rsp 2480 . . . 4
75, 6sylbi 120 . . 3
84, 7vtoclg 2746 . 2
98pm2.43b 52 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1331   wcel 1480  wral 2416   wss 3071   wtr 4026 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-in 3077  df-ss 3084  df-uni 3737  df-tr 4027 This theorem is referenced by:  trin  4036  triun  4039  trintssm  4042  tz7.2  4276  ordelss  4301  trsucss  4345  ordsucss  4420  ctinf  11954
 Copyright terms: Public domain W3C validator