![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trel3 | GIF version |
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) |
Ref | Expression |
---|---|
trel3 | ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 984 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) ↔ (𝐵 ∈ 𝐶 ∧ (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴))) | |
2 | trel 4135 | . . . 4 ⊢ (Tr 𝐴 → ((𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐶 ∈ 𝐴)) | |
3 | 2 | anim2d 337 | . . 3 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴)) → (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
4 | 1, 3 | biimtrid 152 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
5 | trel 4135 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
6 | 4, 5 | syld 45 | 1 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 Tr wtr 4128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-uni 3837 df-tr 4129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |