| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trel3 | GIF version | ||
| Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) |
| Ref | Expression |
|---|---|
| trel3 | ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1006 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) ↔ (𝐵 ∈ 𝐶 ∧ (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴))) | |
| 2 | trel 4188 | . . . 4 ⊢ (Tr 𝐴 → ((𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐶 ∈ 𝐴)) | |
| 3 | 2 | anim2d 337 | . . 3 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴)) → (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
| 4 | 1, 3 | biimtrid 152 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
| 5 | trel 4188 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
| 6 | 4, 5 | syld 45 | 1 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 ∈ wcel 2200 Tr wtr 4181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-tr 4182 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |