ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trel3 GIF version

Theorem trel3 4140
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
trel3 (Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → 𝐵𝐴))

Proof of Theorem trel3
StepHypRef Expression
1 3anass 984 . . 3 ((𝐵𝐶𝐶𝐷𝐷𝐴) ↔ (𝐵𝐶 ∧ (𝐶𝐷𝐷𝐴)))
2 trel 4139 . . . 4 (Tr 𝐴 → ((𝐶𝐷𝐷𝐴) → 𝐶𝐴))
32anim2d 337 . . 3 (Tr 𝐴 → ((𝐵𝐶 ∧ (𝐶𝐷𝐷𝐴)) → (𝐵𝐶𝐶𝐴)))
41, 3biimtrid 152 . 2 (Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → (𝐵𝐶𝐶𝐴)))
5 trel 4139 . 2 (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
64, 5syld 45 1 (Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2167  Tr wtr 4132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-uni 3841  df-tr 4133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator