ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexd Unicode version

Theorem uniexd 4461
Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
uniexd.1  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
uniexd  |-  ( ph  ->  U. A  e.  _V )

Proof of Theorem uniexd
StepHypRef Expression
1 uniexd.1 . 2  |-  ( ph  ->  A  e.  V )
2 uniexg 4460 . 2  |-  ( A  e.  V  ->  U. A  e.  _V )
31, 2syl 14 1  |-  ( ph  ->  U. A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   _Vcvv 2752   U.cuni 3827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-un 4454
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-uni 3828
This theorem is referenced by:  supex2g  7066  ptex  12780  zrhvalg  13940  zrhex  13943
  Copyright terms: Public domain W3C validator