ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexd Unicode version

Theorem uniexd 4472
Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
uniexd.1  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
uniexd  |-  ( ph  ->  U. A  e.  _V )

Proof of Theorem uniexd
StepHypRef Expression
1 uniexd.1 . 2  |-  ( ph  ->  A  e.  V )
2 uniexg 4471 . 2  |-  ( A  e.  V  ->  U. A  e.  _V )
31, 2syl 14 1  |-  ( ph  ->  U. A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   _Vcvv 2760   U.cuni 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-uni 3837
This theorem is referenced by:  supex2g  7094  ptex  12878  zrhval  14116  zrhvalg  14117  zrhex  14120
  Copyright terms: Public domain W3C validator