ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexd Unicode version

Theorem uniexd 4475
Description: Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
uniexd.1  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
uniexd  |-  ( ph  ->  U. A  e.  _V )

Proof of Theorem uniexd
StepHypRef Expression
1 uniexd.1 . 2  |-  ( ph  ->  A  e.  V )
2 uniexg 4474 . 2  |-  ( A  e.  V  ->  U. A  e.  _V )
31, 2syl 14 1  |-  ( ph  ->  U. A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   _Vcvv 2763   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-uni 3840
This theorem is referenced by:  supex2g  7099  ptex  12935  zrhval  14173  zrhvalg  14174  zrhex  14177
  Copyright terms: Public domain W3C validator