![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unex | Unicode version |
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
Ref | Expression |
---|---|
unex.1 |
![]() ![]() ![]() ![]() |
unex.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
unex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unex.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | unex.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | unipr 3850 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | prexg 4241 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 4 | mp2an 426 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | uniex 4469 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | eqeltrri 2267 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-uni 3837 |
This theorem is referenced by: unexb 4474 rdg0 6442 unen 6872 findcard2 6947 findcard2s 6948 ac6sfi 6956 sbthlemi10 7027 finomni 7201 exmidfodomrlemim 7263 nn0ex 9249 xrex 9925 xnn0nnen 10511 nninfct 12181 exmidunben 12586 strleun 12725 fngsum 12974 fnpsr 14164 |
Copyright terms: Public domain | W3C validator |