ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unex Unicode version

Theorem unex 4531
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
Hypotheses
Ref Expression
unex.1  |-  A  e. 
_V
unex.2  |-  B  e. 
_V
Assertion
Ref Expression
unex  |-  ( A  u.  B )  e. 
_V

Proof of Theorem unex
StepHypRef Expression
1 unex.1 . . 3  |-  A  e. 
_V
2 unex.2 . . 3  |-  B  e. 
_V
31, 2unipr 3901 . 2  |-  U. { A ,  B }  =  ( A  u.  B )
4 prexg 4294 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
51, 2, 4mp2an 426 . . 3  |-  { A ,  B }  e.  _V
65uniex 4527 . 2  |-  U. { A ,  B }  e.  _V
73, 6eqeltrri 2303 1  |-  ( A  u.  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799    u. cun 3195   {cpr 3667   U.cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3888
This theorem is referenced by:  unexb  4532  rdg0  6531  unen  6967  findcard2  7047  findcard2s  7048  ac6sfi  7056  sbthlemi10  7129  finomni  7303  exmidfodomrlemim  7375  nn0ex  9371  xrex  10048  xnn0nnen  10654  nninfct  12557  exmidunben  12992  strleun  13132  fngsum  13416  fnpsr  14625
  Copyright terms: Public domain W3C validator