ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unex Unicode version

Theorem unex 4419
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
Hypotheses
Ref Expression
unex.1  |-  A  e. 
_V
unex.2  |-  B  e. 
_V
Assertion
Ref Expression
unex  |-  ( A  u.  B )  e. 
_V

Proof of Theorem unex
StepHypRef Expression
1 unex.1 . . 3  |-  A  e. 
_V
2 unex.2 . . 3  |-  B  e. 
_V
31, 2unipr 3803 . 2  |-  U. { A ,  B }  =  ( A  u.  B )
4 prexg 4189 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
51, 2, 4mp2an 423 . . 3  |-  { A ,  B }  e.  _V
65uniex 4415 . 2  |-  U. { A ,  B }  e.  _V
73, 6eqeltrri 2240 1  |-  ( A  u.  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726    u. cun 3114   {cpr 3577   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790
This theorem is referenced by:  unexb  4420  rdg0  6355  unen  6782  findcard2  6855  findcard2s  6856  ac6sfi  6864  sbthlemi10  6931  finomni  7104  exmidfodomrlemim  7157  nn0ex  9120  xrex  9792  exmidunben  12359  strleun  12484
  Copyright terms: Public domain W3C validator