ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unex Unicode version

Theorem unex 4506
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
Hypotheses
Ref Expression
unex.1  |-  A  e. 
_V
unex.2  |-  B  e. 
_V
Assertion
Ref Expression
unex  |-  ( A  u.  B )  e. 
_V

Proof of Theorem unex
StepHypRef Expression
1 unex.1 . . 3  |-  A  e. 
_V
2 unex.2 . . 3  |-  B  e. 
_V
31, 2unipr 3878 . 2  |-  U. { A ,  B }  =  ( A  u.  B )
4 prexg 4271 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
51, 2, 4mp2an 426 . . 3  |-  { A ,  B }  e.  _V
65uniex 4502 . 2  |-  U. { A ,  B }  e.  _V
73, 6eqeltrri 2281 1  |-  ( A  u.  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   _Vcvv 2776    u. cun 3172   {cpr 3644   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-uni 3865
This theorem is referenced by:  unexb  4507  rdg0  6496  unen  6932  findcard2  7012  findcard2s  7013  ac6sfi  7021  sbthlemi10  7094  finomni  7268  exmidfodomrlemim  7340  nn0ex  9336  xrex  10013  xnn0nnen  10619  nninfct  12477  exmidunben  12912  strleun  13051  fngsum  13335  fnpsr  14544
  Copyright terms: Public domain W3C validator