| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unex | Unicode version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
| Ref | Expression |
|---|---|
| unex.1 |
|
| unex.2 |
|
| Ref | Expression |
|---|---|
| unex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unex.1 |
. . 3
| |
| 2 | unex.2 |
. . 3
| |
| 3 | 1, 2 | unipr 3878 |
. 2
|
| 4 | prexg 4271 |
. . . 4
| |
| 5 | 1, 2, 4 | mp2an 426 |
. . 3
|
| 6 | 5 | uniex 4502 |
. 2
|
| 7 | 3, 6 | eqeltrri 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-uni 3865 |
| This theorem is referenced by: unexb 4507 rdg0 6496 unen 6932 findcard2 7012 findcard2s 7013 ac6sfi 7021 sbthlemi10 7094 finomni 7268 exmidfodomrlemim 7340 nn0ex 9336 xrex 10013 xnn0nnen 10619 nninfct 12477 exmidunben 12912 strleun 13051 fngsum 13335 fnpsr 14544 |
| Copyright terms: Public domain | W3C validator |