ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unex Unicode version

Theorem unex 4488
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
Hypotheses
Ref Expression
unex.1  |-  A  e. 
_V
unex.2  |-  B  e. 
_V
Assertion
Ref Expression
unex  |-  ( A  u.  B )  e. 
_V

Proof of Theorem unex
StepHypRef Expression
1 unex.1 . . 3  |-  A  e. 
_V
2 unex.2 . . 3  |-  B  e. 
_V
31, 2unipr 3864 . 2  |-  U. { A ,  B }  =  ( A  u.  B )
4 prexg 4255 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
51, 2, 4mp2an 426 . . 3  |-  { A ,  B }  e.  _V
65uniex 4484 . 2  |-  U. { A ,  B }  e.  _V
73, 6eqeltrri 2279 1  |-  ( A  u.  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   _Vcvv 2772    u. cun 3164   {cpr 3634   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-uni 3851
This theorem is referenced by:  unexb  4489  rdg0  6473  unen  6908  findcard2  6986  findcard2s  6987  ac6sfi  6995  sbthlemi10  7068  finomni  7242  exmidfodomrlemim  7309  nn0ex  9301  xrex  9978  xnn0nnen  10582  nninfct  12362  exmidunben  12797  strleun  12936  fngsum  13220  fnpsr  14429
  Copyright terms: Public domain W3C validator