ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unex Unicode version

Theorem unex 4443
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
Hypotheses
Ref Expression
unex.1  |-  A  e. 
_V
unex.2  |-  B  e. 
_V
Assertion
Ref Expression
unex  |-  ( A  u.  B )  e. 
_V

Proof of Theorem unex
StepHypRef Expression
1 unex.1 . . 3  |-  A  e. 
_V
2 unex.2 . . 3  |-  B  e. 
_V
31, 2unipr 3825 . 2  |-  U. { A ,  B }  =  ( A  u.  B )
4 prexg 4213 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
51, 2, 4mp2an 426 . . 3  |-  { A ,  B }  e.  _V
65uniex 4439 . 2  |-  U. { A ,  B }  e.  _V
73, 6eqeltrri 2251 1  |-  ( A  u.  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739    u. cun 3129   {cpr 3595   U.cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812
This theorem is referenced by:  unexb  4444  rdg0  6390  unen  6818  findcard2  6891  findcard2s  6892  ac6sfi  6900  sbthlemi10  6967  finomni  7140  exmidfodomrlemim  7202  nn0ex  9184  xrex  9858  exmidunben  12429  strleun  12565
  Copyright terms: Public domain W3C validator