| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unex | Unicode version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
| Ref | Expression |
|---|---|
| unex.1 |
|
| unex.2 |
|
| Ref | Expression |
|---|---|
| unex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unex.1 |
. . 3
| |
| 2 | unex.2 |
. . 3
| |
| 3 | 1, 2 | unipr 3864 |
. 2
|
| 4 | prexg 4255 |
. . . 4
| |
| 5 | 1, 2, 4 | mp2an 426 |
. . 3
|
| 6 | 5 | uniex 4484 |
. 2
|
| 7 | 3, 6 | eqeltrri 2279 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 |
| This theorem is referenced by: unexb 4489 rdg0 6473 unen 6908 findcard2 6986 findcard2s 6987 ac6sfi 6995 sbthlemi10 7068 finomni 7242 exmidfodomrlemim 7309 nn0ex 9301 xrex 9978 xnn0nnen 10582 nninfct 12362 exmidunben 12797 strleun 12936 fngsum 13220 fnpsr 14429 |
| Copyright terms: Public domain | W3C validator |