| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unex | Unicode version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) | 
| Ref | Expression | 
|---|---|
| unex.1 | 
 | 
| unex.2 | 
 | 
| Ref | Expression | 
|---|---|
| unex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unex.1 | 
. . 3
 | |
| 2 | unex.2 | 
. . 3
 | |
| 3 | 1, 2 | unipr 3853 | 
. 2
 | 
| 4 | prexg 4244 | 
. . . 4
 | |
| 5 | 1, 2, 4 | mp2an 426 | 
. . 3
 | 
| 6 | 5 | uniex 4472 | 
. 2
 | 
| 7 | 3, 6 | eqeltrri 2270 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 | 
| This theorem is referenced by: unexb 4477 rdg0 6445 unen 6875 findcard2 6950 findcard2s 6951 ac6sfi 6959 sbthlemi10 7032 finomni 7206 exmidfodomrlemim 7268 nn0ex 9255 xrex 9931 xnn0nnen 10529 nninfct 12208 exmidunben 12643 strleun 12782 fngsum 13031 fnpsr 14221 | 
| Copyright terms: Public domain | W3C validator |