Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unex | Unicode version |
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
Ref | Expression |
---|---|
unex.1 | |
unex.2 |
Ref | Expression |
---|---|
unex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unex.1 | . . 3 | |
2 | unex.2 | . . 3 | |
3 | 1, 2 | unipr 3803 | . 2 |
4 | prexg 4189 | . . . 4 | |
5 | 1, 2, 4 | mp2an 423 | . . 3 |
6 | 5 | uniex 4415 | . 2 |
7 | 3, 6 | eqeltrri 2240 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 cvv 2726 cun 3114 cpr 3577 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: unexb 4420 rdg0 6355 unen 6782 findcard2 6855 findcard2s 6856 ac6sfi 6864 sbthlemi10 6931 finomni 7104 exmidfodomrlemim 7157 nn0ex 9120 xrex 9792 exmidunben 12359 strleun 12484 |
Copyright terms: Public domain | W3C validator |