![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniexg | Unicode version |
Description: The ZF Axiom of Union in
class notation, in the form of a theorem
instead of an inference. We use the antecedent ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uniexg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3820 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq1d 2246 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | vex 2742 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 3 | uniex 4439 |
. 2
![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | vtoclg 2799 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-uni 3812 |
This theorem is referenced by: uniexd 4442 abnexg 4448 snnex 4450 uniexb 4475 ssonuni 4489 dmexg 4893 rnexg 4894 elxp4 5118 elxp5 5119 relrnfvex 5535 fvexg 5536 sefvex 5538 riotaexg 5837 iunexg 6122 1stvalg 6145 2ndvalg 6146 cnvf1o 6228 brtpos2 6254 tfrlemiex 6334 tfr1onlemex 6350 tfrcllemex 6363 en1bg 6802 en1uniel 6806 fival 6971 suplocexprlem2b 7715 suplocexprlemlub 7725 restid 12704 tgval 12716 tgvalex 12717 istopon 13598 eltg 13637 eltg2 13638 tgss2 13664 ntrval 13695 restin 13761 cnovex 13781 cnprcl2k 13791 cnptopresti 13823 cnptoprest 13824 cnptoprest2 13825 lmtopcnp 13835 txbasex 13842 uptx 13859 reldvg 14233 |
Copyright terms: Public domain | W3C validator |