| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexg | Unicode version | ||
| Description: The ZF Axiom of Union in
class notation, in the form of a theorem
instead of an inference. We use the antecedent |
| Ref | Expression |
|---|---|
| uniexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3848 |
. . 3
| |
| 2 | 1 | eleq1d 2265 |
. 2
|
| 3 | vex 2766 |
. . 3
| |
| 4 | 3 | uniex 4472 |
. 2
|
| 5 | 2, 4 | vtoclg 2824 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-uni 3840 |
| This theorem is referenced by: uniexd 4475 abnexg 4481 snnex 4483 uniexb 4508 ssonuni 4524 dmexg 4930 rnexg 4931 elxp4 5157 elxp5 5158 iotaexab 5237 relrnfvex 5576 fvexg 5577 sefvex 5579 riotaexg 5881 iunexg 6176 1stvalg 6200 2ndvalg 6201 cnvf1o 6283 brtpos2 6309 tfrlemiex 6389 tfr1onlemex 6405 tfrcllemex 6418 en1bg 6859 en1uniel 6863 fival 7036 suplocexprlem2b 7781 suplocexprlemlub 7791 wrdexb 10947 restid 12921 tgval 12933 tgvalex 12934 istopon 14249 eltg 14288 eltg2 14289 tgss2 14315 ntrval 14346 restin 14412 cnovex 14432 cnprcl2k 14442 cnptopresti 14474 cnptoprest 14475 cnptoprest2 14476 lmtopcnp 14486 txbasex 14493 uptx 14510 reldvg 14915 |
| Copyright terms: Public domain | W3C validator |