![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniexg | Unicode version |
Description: The ZF Axiom of Union in
class notation, in the form of a theorem
instead of an inference. We use the antecedent ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uniexg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3819 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq1d 2246 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | vex 2741 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 3 | uniex 4438 |
. 2
![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | vtoclg 2798 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2740 df-uni 3811 |
This theorem is referenced by: uniexd 4441 abnexg 4447 snnex 4449 uniexb 4474 ssonuni 4488 dmexg 4892 rnexg 4893 elxp4 5117 elxp5 5118 relrnfvex 5534 fvexg 5535 sefvex 5537 riotaexg 5835 iunexg 6120 1stvalg 6143 2ndvalg 6144 cnvf1o 6226 brtpos2 6252 tfrlemiex 6332 tfr1onlemex 6348 tfrcllemex 6361 en1bg 6800 en1uniel 6804 fival 6969 suplocexprlem2b 7713 suplocexprlemlub 7723 restid 12699 tgval 12711 tgvalex 12712 istopon 13516 eltg 13555 eltg2 13556 tgss2 13582 ntrval 13613 restin 13679 cnovex 13699 cnprcl2k 13709 cnptopresti 13741 cnptoprest 13742 cnptoprest2 13743 lmtopcnp 13753 txbasex 13760 uptx 13777 reldvg 14151 |
Copyright terms: Public domain | W3C validator |