![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniexg | Unicode version |
Description: The ZF Axiom of Union in
class notation, in the form of a theorem
instead of an inference. We use the antecedent ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uniexg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3818 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq1d 2246 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | vex 2740 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 3 | uniex 4437 |
. 2
![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | vtoclg 2797 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-un 4433 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2739 df-uni 3810 |
This theorem is referenced by: uniexd 4440 abnexg 4446 snnex 4448 uniexb 4473 ssonuni 4487 dmexg 4891 rnexg 4892 elxp4 5116 elxp5 5117 relrnfvex 5533 fvexg 5534 sefvex 5536 riotaexg 5834 iunexg 6119 1stvalg 6142 2ndvalg 6143 cnvf1o 6225 brtpos2 6251 tfrlemiex 6331 tfr1onlemex 6347 tfrcllemex 6360 en1bg 6799 en1uniel 6803 fival 6968 suplocexprlem2b 7712 suplocexprlemlub 7722 restid 12698 tgval 12710 tgvalex 12711 istopon 13483 eltg 13522 eltg2 13523 tgss2 13549 ntrval 13580 restin 13646 cnovex 13666 cnprcl2k 13676 cnptopresti 13708 cnptoprest 13709 cnptoprest2 13710 lmtopcnp 13720 txbasex 13727 uptx 13744 reldvg 14118 |
Copyright terms: Public domain | W3C validator |