ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexg Unicode version

Theorem uniexg 4475
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent  A  e.  V instead of  A  e.  _V to make the theorem more general and thus shorten some proofs; obviously the universal class constant  _V is one possible substitution for class variable  V. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
uniexg  |-  ( A  e.  V  ->  U. A  e.  _V )

Proof of Theorem uniexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 unieq 3849 . . 3  |-  ( x  =  A  ->  U. x  =  U. A )
21eleq1d 2265 . 2  |-  ( x  =  A  ->  ( U. x  e.  _V  <->  U. A  e.  _V )
)
3 vex 2766 . . 3  |-  x  e. 
_V
43uniex 4473 . 2  |-  U. x  e.  _V
52, 4vtoclg 2824 1  |-  ( A  e.  V  ->  U. A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   U.cuni 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-uni 3841
This theorem is referenced by:  uniexd  4476  abnexg  4482  snnex  4484  uniexb  4509  ssonuni  4525  dmexg  4931  rnexg  4932  elxp4  5158  elxp5  5159  iotaexab  5238  relrnfvex  5579  fvexg  5580  sefvex  5582  riotaexg  5884  iunexg  6185  1stvalg  6209  2ndvalg  6210  cnvf1o  6292  brtpos2  6318  tfrlemiex  6398  tfr1onlemex  6414  tfrcllemex  6427  en1bg  6868  en1uniel  6872  fival  7045  suplocexprlem2b  7798  suplocexprlemlub  7808  wrdexb  10964  restid  12952  tgval  12964  tgvalex  12965  istopon  14333  eltg  14372  eltg2  14373  tgss2  14399  ntrval  14430  restin  14496  cnovex  14516  cnprcl2k  14526  cnptopresti  14558  cnptoprest  14559  cnptoprest2  14560  lmtopcnp  14570  txbasex  14577  uptx  14594  reldvg  14999
  Copyright terms: Public domain W3C validator