| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexg | Unicode version | ||
| Description: The ZF Axiom of Union in
class notation, in the form of a theorem
instead of an inference. We use the antecedent |
| Ref | Expression |
|---|---|
| uniexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3849 |
. . 3
| |
| 2 | 1 | eleq1d 2265 |
. 2
|
| 3 | vex 2766 |
. . 3
| |
| 4 | 3 | uniex 4473 |
. 2
|
| 5 | 2, 4 | vtoclg 2824 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-uni 3841 |
| This theorem is referenced by: uniexd 4476 abnexg 4482 snnex 4484 uniexb 4509 ssonuni 4525 dmexg 4931 rnexg 4932 elxp4 5158 elxp5 5159 iotaexab 5238 relrnfvex 5579 fvexg 5580 sefvex 5582 riotaexg 5884 iunexg 6185 1stvalg 6209 2ndvalg 6210 cnvf1o 6292 brtpos2 6318 tfrlemiex 6398 tfr1onlemex 6414 tfrcllemex 6427 en1bg 6868 en1uniel 6872 fival 7045 suplocexprlem2b 7798 suplocexprlemlub 7808 wrdexb 10964 restid 12952 tgval 12964 tgvalex 12965 istopon 14333 eltg 14372 eltg2 14373 tgss2 14399 ntrval 14430 restin 14496 cnovex 14516 cnprcl2k 14526 cnptopresti 14558 cnptoprest 14559 cnptoprest2 14560 lmtopcnp 14570 txbasex 14577 uptx 14594 reldvg 14999 |
| Copyright terms: Public domain | W3C validator |