| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexg | Unicode version | ||
| Description: The ZF Axiom of Union in
class notation, in the form of a theorem
instead of an inference. We use the antecedent |
| Ref | Expression |
|---|---|
| uniexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3859 |
. . 3
| |
| 2 | 1 | eleq1d 2274 |
. 2
|
| 3 | vex 2775 |
. . 3
| |
| 4 | 3 | uniex 4485 |
. 2
|
| 5 | 2, 4 | vtoclg 2833 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-uni 3851 |
| This theorem is referenced by: uniexd 4488 abnexg 4494 snnex 4496 uniexb 4521 ssonuni 4537 dmexg 4943 rnexg 4944 elxp4 5171 elxp5 5172 iotaexab 5251 relrnfvex 5596 fvexg 5597 sefvex 5599 riotaexg 5905 iunexg 6206 1stvalg 6230 2ndvalg 6231 cnvf1o 6313 brtpos2 6339 tfrlemiex 6419 tfr1onlemex 6435 tfrcllemex 6448 en1bg 6894 en1uniel 6898 fival 7074 suplocexprlem2b 7829 suplocexprlemlub 7839 wrdexb 11008 restid 13115 tgval 13127 tgvalex 13128 istopon 14518 eltg 14557 eltg2 14558 tgss2 14584 ntrval 14615 restin 14681 cnovex 14701 cnprcl2k 14711 cnptopresti 14743 cnptoprest 14744 cnptoprest2 14745 lmtopcnp 14755 txbasex 14762 uptx 14779 reldvg 15184 |
| Copyright terms: Public domain | W3C validator |