Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniexg | Unicode version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent instead of to make the theorem more general and thus shorten some proofs; obviously the universal class constant is one possible substitution for class variable . (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3777 | . . 3 | |
2 | 1 | eleq1d 2223 | . 2 |
3 | vex 2712 | . . 3 | |
4 | 3 | uniex 4392 | . 2 |
5 | 2, 4 | vtoclg 2769 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 wcel 2125 cvv 2709 cuni 3768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 df-v 2711 df-uni 3769 |
This theorem is referenced by: abnexg 4400 snnex 4402 uniexb 4427 ssonuni 4441 dmexg 4843 rnexg 4844 elxp4 5066 elxp5 5067 relrnfvex 5479 fvexg 5480 sefvex 5482 riotaexg 5774 iunexg 6057 1stvalg 6080 2ndvalg 6081 cnvf1o 6162 brtpos2 6188 tfrlemiex 6268 tfr1onlemex 6284 tfrcllemex 6297 en1bg 6734 en1uniel 6738 fival 6903 suplocexprlem2b 7613 suplocexprlemlub 7623 restid 12301 istopon 12350 tgval 12388 tgvalex 12389 eltg 12391 eltg2 12392 tgss2 12418 ntrval 12449 restin 12515 cnovex 12535 cnprcl2k 12545 cnptopresti 12577 cnptoprest 12578 cnptoprest2 12579 lmtopcnp 12589 txbasex 12596 uptx 12613 reldvg 12987 |
Copyright terms: Public domain | W3C validator |