ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supex2g Unicode version

Theorem supex2g 7161
Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
supex2g  |-  ( A  e.  C  ->  sup ( B ,  A ,  R )  e.  _V )

Proof of Theorem supex2g
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 7112 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
2 rabexg 4203 . . 3  |-  ( A  e.  C  ->  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  e.  _V )
32uniexd 4505 . 2  |-  ( A  e.  C  ->  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  e.  _V )
41, 3eqeltrid 2294 1  |-  ( A  e.  C  ->  sup ( B ,  A ,  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2178   A.wral 2486   E.wrex 2487   {crab 2490   _Vcvv 2776   U.cuni 3864   class class class wbr 4059   supcsup 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-rab 2495  df-v 2778  df-in 3180  df-ss 3187  df-uni 3865  df-sup 7112
This theorem is referenced by:  infex2g  7162  pczpre  12735
  Copyright terms: Public domain W3C validator