ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supex2g Unicode version

Theorem supex2g 7034
Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
supex2g  |-  ( A  e.  C  ->  sup ( B ,  A ,  R )  e.  _V )

Proof of Theorem supex2g
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 6985 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
2 rabexg 4148 . . 3  |-  ( A  e.  C  ->  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  e.  _V )
32uniexd 4442 . 2  |-  ( A  e.  C  ->  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  e.  _V )
41, 3eqeltrid 2264 1  |-  ( A  e.  C  ->  sup ( B ,  A ,  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   _Vcvv 2739   U.cuni 3811   class class class wbr 4005   supcsup 6983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-sup 6985
This theorem is referenced by:  infex2g  7035  pczpre  12299
  Copyright terms: Public domain W3C validator