ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supex2g Unicode version

Theorem supex2g 7099
Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
supex2g  |-  ( A  e.  C  ->  sup ( B ,  A ,  R )  e.  _V )

Proof of Theorem supex2g
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 7050 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
2 rabexg 4176 . . 3  |-  ( A  e.  C  ->  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  e.  _V )
32uniexd 4475 . 2  |-  ( A  e.  C  ->  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  e.  _V )
41, 3eqeltrid 2283 1  |-  ( A  e.  C  ->  sup ( B ,  A ,  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479   _Vcvv 2763   U.cuni 3839   class class class wbr 4033   supcsup 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-sup 7050
This theorem is referenced by:  infex2g  7100  pczpre  12466
  Copyright terms: Public domain W3C validator