ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixp0im Unicode version

Theorem unixp0im 5261
Description: The union of an empty cross product is empty. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixp0im  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  =  (/) )

Proof of Theorem unixp0im
StepHypRef Expression
1 unieq 3896 . 2  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  = 
U. (/) )
2 uni0 3914 . 2  |-  U. (/)  =  (/)
31, 2eqtrdi 2278 1  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   (/)c0 3491   U.cuni 3887    X. cxp 4714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-uni 3888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator