ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixp0im Unicode version

Theorem unixp0im 5001
Description: The union of an empty cross product is empty. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixp0im  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  =  (/) )

Proof of Theorem unixp0im
StepHypRef Expression
1 unieq 3684 . 2  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  = 
U. (/) )
2 uni0 3702 . 2  |-  U. (/)  =  (/)
31, 2syl6eq 2143 1  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296   (/)c0 3302   U.cuni 3675    X. cxp 4465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-dif 3015  df-in 3019  df-ss 3026  df-nul 3303  df-sn 3472  df-uni 3676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator