ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixp0im Unicode version

Theorem unixp0im 5225
Description: The union of an empty cross product is empty. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixp0im  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  =  (/) )

Proof of Theorem unixp0im
StepHypRef Expression
1 unieq 3862 . 2  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  = 
U. (/) )
2 uni0 3880 . 2  |-  U. (/)  =  (/)
31, 2eqtrdi 2255 1  |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   (/)c0 3462   U.cuni 3853    X. cxp 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3170  df-in 3174  df-ss 3181  df-nul 3463  df-sn 3641  df-uni 3854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator