ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixp0im GIF version

Theorem unixp0im 5219
Description: The union of an empty cross product is empty. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixp0im ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)

Proof of Theorem unixp0im
StepHypRef Expression
1 unieq 3859 . 2 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
2 uni0 3877 . 2 ∅ = ∅
31, 2eqtrdi 2254 1 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  c0 3460   cuni 3850   × cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-uni 3851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator