ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixp0im GIF version

Theorem unixp0im 5177
Description: The union of an empty cross product is empty. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixp0im ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)

Proof of Theorem unixp0im
StepHypRef Expression
1 unieq 3830 . 2 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
2 uni0 3848 . 2 ∅ = ∅
31, 2eqtrdi 2236 1 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  c0 3434   cuni 3821   × cxp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-in 3147  df-ss 3154  df-nul 3435  df-sn 3610  df-uni 3822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator