| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unixp0im | GIF version | ||
| Description: The union of an empty cross product is empty. (Contributed by Jim Kingdon, 18-Dec-2018.) |
| Ref | Expression |
|---|---|
| unixp0im | ⊢ ((𝐴 × 𝐵) = ∅ → ∪ (𝐴 × 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3873 | . 2 ⊢ ((𝐴 × 𝐵) = ∅ → ∪ (𝐴 × 𝐵) = ∪ ∅) | |
| 2 | uni0 3891 | . 2 ⊢ ∪ ∅ = ∅ | |
| 3 | 1, 2 | eqtrdi 2256 | 1 ⊢ ((𝐴 × 𝐵) = ∅ → ∪ (𝐴 × 𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∅c0 3468 ∪ cuni 3864 × cxp 4691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-uni 3865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |