ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixp0im GIF version

Theorem unixp0im 5165
Description: The union of an empty cross product is empty. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixp0im ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)

Proof of Theorem unixp0im
StepHypRef Expression
1 unieq 3818 . 2 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
2 uni0 3836 . 2 ∅ = ∅
31, 2eqtrdi 2226 1 ((𝐴 × 𝐵) = ∅ → (𝐴 × 𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  c0 3422   cuni 3809   × cxp 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-in 3135  df-ss 3142  df-nul 3423  df-sn 3598  df-uni 3810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator