| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieq | Unicode version | ||
| Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| unieq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2694 |
. . 3
| |
| 2 | 1 | abbidv 2314 |
. 2
|
| 3 | dfuni2 3841 |
. 2
| |
| 4 | dfuni2 3841 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 |
| This theorem is referenced by: unieqi 3849 unieqd 3850 uniintsnr 3910 iununir 4000 treq 4137 limeq 4412 uniex 4472 uniexg 4474 ordsucunielexmid 4567 onsucuni2 4600 nnpredcl 4659 elvvuni 4727 unielrel 5197 unixp0im 5206 iotass 5236 nnsucuniel 6553 en1bg 6859 omp1eom 7161 ctmlemr 7174 nnnninfeq2 7195 uniopn 14237 istopon 14249 eltg3 14293 tgdom 14308 cldval 14335 ntrfval 14336 clsfval 14337 neifval 14376 tgrest 14405 cnprcl2k 14442 bj-uniex 15563 bj-uniexg 15564 nnsf 15649 peano3nninf 15651 exmidsbthr 15667 |
| Copyright terms: Public domain | W3C validator |