Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unieq | Unicode version |
Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
unieq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 2662 | . . 3 | |
2 | 1 | abbidv 2284 | . 2 |
3 | dfuni2 3791 | . 2 | |
4 | dfuni2 3791 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cab 2151 wrex 2445 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-uni 3790 |
This theorem is referenced by: unieqi 3799 unieqd 3800 uniintsnr 3860 iununir 3949 treq 4086 limeq 4355 uniex 4415 uniexg 4417 ordsucunielexmid 4508 onsucuni2 4541 nnpredcl 4600 elvvuni 4668 unielrel 5131 unixp0im 5140 iotass 5170 nnsucuniel 6463 en1bg 6766 omp1eom 7060 ctmlemr 7073 nnnninfeq2 7093 uniopn 12649 istopon 12661 eltg3 12707 tgdom 12722 cldval 12749 ntrfval 12750 clsfval 12751 neifval 12790 tgrest 12819 cnprcl2k 12856 bj-uniex 13809 bj-uniexg 13810 nnsf 13895 peano3nninf 13897 exmidsbthr 13912 |
Copyright terms: Public domain | W3C validator |