| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieq | Unicode version | ||
| Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| unieq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2729 |
. . 3
| |
| 2 | 1 | abbidv 2347 |
. 2
|
| 3 | dfuni2 3890 |
. 2
| |
| 4 | dfuni2 3890 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3889 |
| This theorem is referenced by: unieqi 3898 unieqd 3899 uniintsnr 3959 iununir 4049 treq 4188 limeq 4468 uniex 4528 uniexg 4530 ordsucunielexmid 4623 onsucuni2 4656 nnpredcl 4715 elvvuni 4783 unielrel 5256 unixp0im 5265 iotass 5296 nnsucuniel 6641 en1bg 6952 omp1eom 7262 ctmlemr 7275 nnnninfeq2 7296 uniopn 14675 istopon 14687 eltg3 14731 tgdom 14746 cldval 14773 ntrfval 14774 clsfval 14775 neifval 14814 tgrest 14843 cnprcl2k 14880 bj-uniex 16280 bj-uniexg 16281 nnsf 16371 peano3nninf 16373 exmidsbthr 16391 |
| Copyright terms: Public domain | W3C validator |