Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unieq | Unicode version |
Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
unieq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 2653 | . . 3 | |
2 | 1 | abbidv 2275 | . 2 |
3 | dfuni2 3776 | . 2 | |
4 | dfuni2 3776 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 cab 2143 wrex 2436 cuni 3774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-uni 3775 |
This theorem is referenced by: unieqi 3784 unieqd 3785 uniintsnr 3845 iununir 3934 treq 4070 limeq 4339 uniex 4399 uniexg 4401 ordsucunielexmid 4492 onsucuni2 4525 nnpredcl 4584 elvvuni 4652 unielrel 5115 unixp0im 5124 iotass 5154 nnsucuniel 6444 en1bg 6747 omp1eom 7041 ctmlemr 7054 nnnninfeq2 7074 uniopn 12469 istopon 12481 eltg3 12527 tgdom 12542 cldval 12569 ntrfval 12570 clsfval 12571 neifval 12610 tgrest 12639 cnprcl2k 12676 bj-uniex 13563 bj-uniexg 13564 nnsf 13648 peano3nninf 13650 exmidsbthr 13665 |
Copyright terms: Public domain | W3C validator |