| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieq | Unicode version | ||
| Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| unieq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2703 |
. . 3
| |
| 2 | 1 | abbidv 2323 |
. 2
|
| 3 | dfuni2 3852 |
. 2
| |
| 4 | dfuni2 3852 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 |
| This theorem is referenced by: unieqi 3860 unieqd 3861 uniintsnr 3921 iununir 4011 treq 4149 limeq 4425 uniex 4485 uniexg 4487 ordsucunielexmid 4580 onsucuni2 4613 nnpredcl 4672 elvvuni 4740 unielrel 5211 unixp0im 5220 iotass 5250 nnsucuniel 6583 en1bg 6894 omp1eom 7199 ctmlemr 7212 nnnninfeq2 7233 uniopn 14506 istopon 14518 eltg3 14562 tgdom 14577 cldval 14604 ntrfval 14605 clsfval 14606 neifval 14645 tgrest 14674 cnprcl2k 14711 bj-uniex 15890 bj-uniexg 15891 nnsf 15979 peano3nninf 15981 exmidsbthr 15999 |
| Copyright terms: Public domain | W3C validator |