ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0 Unicode version

Theorem uni0 3877
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Reproved without relying on ax-nul by Eric Schmidt.) (Contributed by NM, 16-Sep-1993.) (Revised by Eric Schmidt, 4-Apr-2007.)
Assertion
Ref Expression
uni0  |-  U. (/)  =  (/)

Proof of Theorem uni0
StepHypRef Expression
1 0ss 3499 . 2  |-  (/)  C_  { (/) }
2 uni0b 3875 . 2  |-  ( U. (/)  =  (/)  <->  (/)  C_  { (/) } )
31, 2mpbir 146 1  |-  U. (/)  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3166   (/)c0 3460   {csn 3633   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-uni 3851
This theorem is referenced by:  iununir  4011  nnpredcl  4671  unixp0im  5219  iotanul  5247  1st0  6230  2nd0  6231  brtpos0  6338  tpostpos  6350  nnsucuniel  6581  sup00  7105  nnnninfeq2  7231  0opn  14478
  Copyright terms: Public domain W3C validator