Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uni0 | Unicode version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Reproved without relying on ax-nul by Eric Schmidt.) (Contributed by NM, 16-Sep-1993.) (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3432 | . 2 | |
2 | uni0b 3797 | . 2 | |
3 | 1, 2 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 wss 3102 c0 3394 csn 3560 cuni 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-uni 3773 |
This theorem is referenced by: iununir 3932 nnpredcl 4581 unixp0im 5121 iotanul 5149 1st0 6089 2nd0 6090 brtpos0 6196 tpostpos 6208 nnsucuniel 6439 sup00 6944 nnnninfeq2 7067 0opn 12391 |
Copyright terms: Public domain | W3C validator |