ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0 Unicode version

Theorem uni0 3866
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Reproved without relying on ax-nul by Eric Schmidt.) (Contributed by NM, 16-Sep-1993.) (Revised by Eric Schmidt, 4-Apr-2007.)
Assertion
Ref Expression
uni0  |-  U. (/)  =  (/)

Proof of Theorem uni0
StepHypRef Expression
1 0ss 3489 . 2  |-  (/)  C_  { (/) }
2 uni0b 3864 . 2  |-  ( U. (/)  =  (/)  <->  (/)  C_  { (/) } )
31, 2mpbir 146 1  |-  U. (/)  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    C_ wss 3157   (/)c0 3450   {csn 3622   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-uni 3840
This theorem is referenced by:  iununir  4000  nnpredcl  4659  unixp0im  5206  iotanul  5234  1st0  6202  2nd0  6203  brtpos0  6310  tpostpos  6322  nnsucuniel  6553  sup00  7069  nnnninfeq2  7195  0opn  14242
  Copyright terms: Public domain W3C validator