Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvexg | Unicode version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
Ref | Expression |
---|---|
cnvexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4989 | . . 3 | |
2 | relssdmrn 5131 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | df-rn 4622 | . . . 4 | |
5 | rnexg 4876 | . . . 4 | |
6 | 4, 5 | eqeltrrid 2258 | . . 3 |
7 | dfdm4 4803 | . . . 4 | |
8 | dmexg 4875 | . . . 4 | |
9 | 7, 8 | eqeltrrid 2258 | . . 3 |
10 | xpexg 4725 | . . 3 | |
11 | 6, 9, 10 | syl2anc 409 | . 2 |
12 | ssexg 4128 | . 2 | |
13 | 3, 11, 12 | sylancr 412 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cvv 2730 wss 3121 cxp 4609 ccnv 4610 cdm 4611 crn 4612 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: cnvex 5149 relcnvexb 5150 cofunex2g 6089 cnvf1o 6204 brtpos2 6230 tposexg 6237 cnven 6786 cnvct 6787 fopwdom 6814 relcnvfi 6918 ennnfonelemim 12379 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |