| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvexg | Unicode version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5106 |
. . 3
| |
| 2 | relssdmrn 5249 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | df-rn 4730 |
. . . 4
| |
| 5 | rnexg 4989 |
. . . 4
| |
| 6 | 4, 5 | eqeltrrid 2317 |
. . 3
|
| 7 | dfdm4 4915 |
. . . 4
| |
| 8 | dmexg 4988 |
. . . 4
| |
| 9 | 7, 8 | eqeltrrid 2317 |
. . 3
|
| 10 | xpexg 4833 |
. . 3
| |
| 11 | 6, 9, 10 | syl2anc 411 |
. 2
|
| 12 | ssexg 4223 |
. 2
| |
| 13 | 3, 11, 12 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-dm 4729 df-rn 4730 |
| This theorem is referenced by: cnvex 5267 relcnvexb 5268 cofunex2g 6255 cnvf1o 6371 brtpos2 6397 tposexg 6404 cnven 6961 cnvct 6962 fopwdom 6997 relcnvfi 7108 ennnfonelemim 12995 xpsval 13385 isunitd 14070 znval 14600 znle 14601 znbaslemnn 14603 znleval 14617 pw1nct 16369 |
| Copyright terms: Public domain | W3C validator |