| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvexg | Unicode version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5079 |
. . 3
| |
| 2 | relssdmrn 5222 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | df-rn 4704 |
. . . 4
| |
| 5 | rnexg 4962 |
. . . 4
| |
| 6 | 4, 5 | eqeltrrid 2295 |
. . 3
|
| 7 | dfdm4 4889 |
. . . 4
| |
| 8 | dmexg 4961 |
. . . 4
| |
| 9 | 7, 8 | eqeltrrid 2295 |
. . 3
|
| 10 | xpexg 4807 |
. . 3
| |
| 11 | 6, 9, 10 | syl2anc 411 |
. 2
|
| 12 | ssexg 4199 |
. 2
| |
| 13 | 3, 11, 12 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 |
| This theorem is referenced by: cnvex 5240 relcnvexb 5241 cofunex2g 6218 cnvf1o 6334 brtpos2 6360 tposexg 6367 cnven 6924 cnvct 6925 fopwdom 6958 relcnvfi 7069 ennnfonelemim 12910 xpsval 13299 isunitd 13983 znval 14513 znle 14514 znbaslemnn 14516 znleval 14530 pw1nct 16142 |
| Copyright terms: Public domain | W3C validator |