ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvexg Unicode version

Theorem cnvexg 5167
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
Assertion
Ref Expression
cnvexg  |-  ( A  e.  V  ->  `' A  e.  _V )

Proof of Theorem cnvexg
StepHypRef Expression
1 relcnv 5007 . . 3  |-  Rel  `' A
2 relssdmrn 5150 . . 3  |-  ( Rel  `' A  ->  `' A  C_  ( dom  `' A  X.  ran  `' A ) )
31, 2ax-mp 5 . 2  |-  `' A  C_  ( dom  `' A  X.  ran  `' A )
4 df-rn 4638 . . . 4  |-  ran  A  =  dom  `' A
5 rnexg 4893 . . . 4  |-  ( A  e.  V  ->  ran  A  e.  _V )
64, 5eqeltrrid 2265 . . 3  |-  ( A  e.  V  ->  dom  `' A  e.  _V )
7 dfdm4 4820 . . . 4  |-  dom  A  =  ran  `' A
8 dmexg 4892 . . . 4  |-  ( A  e.  V  ->  dom  A  e.  _V )
97, 8eqeltrrid 2265 . . 3  |-  ( A  e.  V  ->  ran  `' A  e.  _V )
10 xpexg 4741 . . 3  |-  ( ( dom  `' A  e. 
_V  /\  ran  `' A  e.  _V )  ->  ( dom  `' A  X.  ran  `' A )  e.  _V )
116, 9, 10syl2anc 411 . 2  |-  ( A  e.  V  ->  ( dom  `' A  X.  ran  `' A )  e.  _V )
12 ssexg 4143 . 2  |-  ( ( `' A  C_  ( dom  `' A  X.  ran  `' A )  /\  ( dom  `' A  X.  ran  `' A )  e.  _V )  ->  `' A  e. 
_V )
133, 11, 12sylancr 414 1  |-  ( A  e.  V  ->  `' A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   _Vcvv 2738    C_ wss 3130    X. cxp 4625   `'ccnv 4626   dom cdm 4627   ran crn 4628   Rel wrel 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-dm 4637  df-rn 4638
This theorem is referenced by:  cnvex  5168  relcnvexb  5169  cofunex2g  6111  cnvf1o  6226  brtpos2  6252  tposexg  6259  cnven  6808  cnvct  6809  fopwdom  6836  relcnvfi  6940  ennnfonelemim  12425  xpsval  12771  isunitd  13275  pw1nct  14755
  Copyright terms: Public domain W3C validator