Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvexg | Unicode version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
Ref | Expression |
---|---|
cnvexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4999 | . . 3 | |
2 | relssdmrn 5141 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | df-rn 4631 | . . . 4 | |
5 | rnexg 4885 | . . . 4 | |
6 | 4, 5 | eqeltrrid 2263 | . . 3 |
7 | dfdm4 4812 | . . . 4 | |
8 | dmexg 4884 | . . . 4 | |
9 | 7, 8 | eqeltrrid 2263 | . . 3 |
10 | xpexg 4734 | . . 3 | |
11 | 6, 9, 10 | syl2anc 411 | . 2 |
12 | ssexg 4137 | . 2 | |
13 | 3, 11, 12 | sylancr 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 cvv 2735 wss 3127 cxp 4618 ccnv 4619 cdm 4620 crn 4621 wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-dm 4630 df-rn 4631 |
This theorem is referenced by: cnvex 5159 relcnvexb 5160 cofunex2g 6101 cnvf1o 6216 brtpos2 6242 tposexg 6249 cnven 6798 cnvct 6799 fopwdom 6826 relcnvfi 6930 ennnfonelemim 12392 pw1nct 14313 |
Copyright terms: Public domain | W3C validator |