| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvexg | Unicode version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5060 |
. . 3
| |
| 2 | relssdmrn 5203 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | df-rn 4686 |
. . . 4
| |
| 5 | rnexg 4943 |
. . . 4
| |
| 6 | 4, 5 | eqeltrrid 2293 |
. . 3
|
| 7 | dfdm4 4870 |
. . . 4
| |
| 8 | dmexg 4942 |
. . . 4
| |
| 9 | 7, 8 | eqeltrrid 2293 |
. . 3
|
| 10 | xpexg 4789 |
. . 3
| |
| 11 | 6, 9, 10 | syl2anc 411 |
. 2
|
| 12 | ssexg 4183 |
. 2
| |
| 13 | 3, 11, 12 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-dm 4685 df-rn 4686 |
| This theorem is referenced by: cnvex 5221 relcnvexb 5222 cofunex2g 6195 cnvf1o 6311 brtpos2 6337 tposexg 6344 cnven 6900 cnvct 6901 fopwdom 6933 relcnvfi 7043 ennnfonelemim 12795 xpsval 13184 isunitd 13868 znval 14398 znle 14399 znbaslemnn 14401 znleval 14415 pw1nct 15940 |
| Copyright terms: Public domain | W3C validator |