ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvexg Unicode version

Theorem cnvexg 5148
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
Assertion
Ref Expression
cnvexg  |-  ( A  e.  V  ->  `' A  e.  _V )

Proof of Theorem cnvexg
StepHypRef Expression
1 relcnv 4989 . . 3  |-  Rel  `' A
2 relssdmrn 5131 . . 3  |-  ( Rel  `' A  ->  `' A  C_  ( dom  `' A  X.  ran  `' A ) )
31, 2ax-mp 5 . 2  |-  `' A  C_  ( dom  `' A  X.  ran  `' A )
4 df-rn 4622 . . . 4  |-  ran  A  =  dom  `' A
5 rnexg 4876 . . . 4  |-  ( A  e.  V  ->  ran  A  e.  _V )
64, 5eqeltrrid 2258 . . 3  |-  ( A  e.  V  ->  dom  `' A  e.  _V )
7 dfdm4 4803 . . . 4  |-  dom  A  =  ran  `' A
8 dmexg 4875 . . . 4  |-  ( A  e.  V  ->  dom  A  e.  _V )
97, 8eqeltrrid 2258 . . 3  |-  ( A  e.  V  ->  ran  `' A  e.  _V )
10 xpexg 4725 . . 3  |-  ( ( dom  `' A  e. 
_V  /\  ran  `' A  e.  _V )  ->  ( dom  `' A  X.  ran  `' A )  e.  _V )
116, 9, 10syl2anc 409 . 2  |-  ( A  e.  V  ->  ( dom  `' A  X.  ran  `' A )  e.  _V )
12 ssexg 4128 . 2  |-  ( ( `' A  C_  ( dom  `' A  X.  ran  `' A )  /\  ( dom  `' A  X.  ran  `' A )  e.  _V )  ->  `' A  e. 
_V )
133, 11, 12sylancr 412 1  |-  ( A  e.  V  ->  `' A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730    C_ wss 3121    X. cxp 4609   `'ccnv 4610   dom cdm 4611   ran crn 4612   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  cnvex  5149  relcnvexb  5150  cofunex2g  6089  cnvf1o  6204  brtpos2  6230  tposexg  6237  cnven  6786  cnvct  6787  fopwdom  6814  relcnvfi  6918  ennnfonelemim  12379  pw1nct  14036
  Copyright terms: Public domain W3C validator