ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpm Unicode version

Theorem unixpm 5139
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixpm  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem unixpm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4713 . . 3  |-  Rel  ( A  X.  B )
2 relfld 5132 . . 3  |-  ( Rel  ( A  X.  B
)  ->  U. U. ( A  X.  B )  =  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) ) )
31, 2ax-mp 5 . 2  |-  U. U. ( A  X.  B
)  =  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )
4 ancom 264 . . . 4  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <-> 
( E. a  a  e.  A  /\  E. b  b  e.  B
) )
5 xpm 5025 . . . 4  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
64, 5bitri 183 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <->  E. x  x  e.  ( A  X.  B
) )
7 dmxpm 4824 . . . 4  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
8 rnxpm 5033 . . . 4  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
9 uneq12 3271 . . . 4  |-  ( ( dom  ( A  X.  B )  =  A  /\  ran  ( A  X.  B )  =  B )  ->  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )  =  ( A  u.  B ) )
107, 8, 9syl2an 287 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
116, 10sylbir 134 . 2  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
123, 11syl5eq 2211 1  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136    u. cun 3114   U.cuni 3789    X. cxp 4602   dom cdm 4604   ran crn 4605   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator