ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpm Unicode version

Theorem unixpm 5223
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixpm  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem unixpm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4788 . . 3  |-  Rel  ( A  X.  B )
2 relfld 5216 . . 3  |-  ( Rel  ( A  X.  B
)  ->  U. U. ( A  X.  B )  =  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) ) )
31, 2ax-mp 5 . 2  |-  U. U. ( A  X.  B
)  =  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )
4 ancom 266 . . . 4  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <-> 
( E. a  a  e.  A  /\  E. b  b  e.  B
) )
5 xpm 5109 . . . 4  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
64, 5bitri 184 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <->  E. x  x  e.  ( A  X.  B
) )
7 dmxpm 4903 . . . 4  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
8 rnxpm 5117 . . . 4  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
9 uneq12 3323 . . . 4  |-  ( ( dom  ( A  X.  B )  =  A  /\  ran  ( A  X.  B )  =  B )  ->  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )  =  ( A  u.  B ) )
107, 8, 9syl2an 289 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
116, 10sylbir 135 . 2  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
123, 11eqtrid 2251 1  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177    u. cun 3165   U.cuni 3852    X. cxp 4677   dom cdm 4679   ran crn 4680   Rel wrel 4684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687  df-dm 4689  df-rn 4690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator