| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unixpm | Unicode version | ||
| Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.) |
| Ref | Expression |
|---|---|
| unixpm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4825 |
. . 3
| |
| 2 | relfld 5253 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | ancom 266 |
. . . 4
| |
| 5 | xpm 5146 |
. . . 4
| |
| 6 | 4, 5 | bitri 184 |
. . 3
|
| 7 | dmxpm 4940 |
. . . 4
| |
| 8 | rnxpm 5154 |
. . . 4
| |
| 9 | uneq12 3353 |
. . . 4
| |
| 10 | 7, 8, 9 | syl2an 289 |
. . 3
|
| 11 | 6, 10 | sylbir 135 |
. 2
|
| 12 | 3, 11 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-cnv 4724 df-dm 4726 df-rn 4727 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |