ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpm Unicode version

Theorem unixpm 5144
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixpm  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem unixpm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4718 . . 3  |-  Rel  ( A  X.  B )
2 relfld 5137 . . 3  |-  ( Rel  ( A  X.  B
)  ->  U. U. ( A  X.  B )  =  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) ) )
31, 2ax-mp 5 . 2  |-  U. U. ( A  X.  B
)  =  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )
4 ancom 264 . . . 4  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <-> 
( E. a  a  e.  A  /\  E. b  b  e.  B
) )
5 xpm 5030 . . . 4  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
64, 5bitri 183 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <->  E. x  x  e.  ( A  X.  B
) )
7 dmxpm 4829 . . . 4  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
8 rnxpm 5038 . . . 4  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
9 uneq12 3276 . . . 4  |-  ( ( dom  ( A  X.  B )  =  A  /\  ran  ( A  X.  B )  =  B )  ->  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )  =  ( A  u.  B ) )
107, 8, 9syl2an 287 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
116, 10sylbir 134 . 2  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
123, 11eqtrid 2215 1  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141    u. cun 3119   U.cuni 3794    X. cxp 4607   dom cdm 4609   ran crn 4610   Rel wrel 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-xp 4615  df-rel 4616  df-cnv 4617  df-dm 4619  df-rn 4620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator