ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpm Unicode version

Theorem unixpm 5166
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixpm  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem unixpm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4737 . . 3  |-  Rel  ( A  X.  B )
2 relfld 5159 . . 3  |-  ( Rel  ( A  X.  B
)  ->  U. U. ( A  X.  B )  =  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) ) )
31, 2ax-mp 5 . 2  |-  U. U. ( A  X.  B
)  =  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )
4 ancom 266 . . . 4  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <-> 
( E. a  a  e.  A  /\  E. b  b  e.  B
) )
5 xpm 5052 . . . 4  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
64, 5bitri 184 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <->  E. x  x  e.  ( A  X.  B
) )
7 dmxpm 4849 . . . 4  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
8 rnxpm 5060 . . . 4  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
9 uneq12 3286 . . . 4  |-  ( ( dom  ( A  X.  B )  =  A  /\  ran  ( A  X.  B )  =  B )  ->  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )  =  ( A  u.  B ) )
107, 8, 9syl2an 289 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
116, 10sylbir 135 . 2  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
123, 11eqtrid 2222 1  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148    u. cun 3129   U.cuni 3811    X. cxp 4626   dom cdm 4628   ran crn 4629   Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator