ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unundir Unicode version

Theorem unundir 3298
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundir  |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  ( B  u.  C )
)

Proof of Theorem unundir
StepHypRef Expression
1 unidm 3279 . . 3  |-  ( C  u.  C )  =  C
21uneq2i 3287 . 2  |-  ( ( A  u.  B )  u.  ( C  u.  C ) )  =  ( ( A  u.  B )  u.  C
)
3 un4 3296 . 2  |-  ( ( A  u.  B )  u.  ( C  u.  C ) )  =  ( ( A  u.  C )  u.  ( B  u.  C )
)
42, 3eqtr3i 2200 1  |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  ( B  u.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353    u. cun 3128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator