Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq2i | Unicode version |
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
uneq1i.1 |
Ref | Expression |
---|---|
uneq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 | |
2 | uneq2 3270 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 |
This theorem is referenced by: un4 3282 unundir 3284 difun2 3488 difdifdirss 3493 qdass 3673 qdassr 3674 unisuc 4391 iunsuc 4398 fmptap 5675 fvsnun1 5682 rdgival 6350 rdg0 6355 undifdc 6889 exmidfodomrlemim 7157 djuassen 7173 facnn 10640 fac0 10641 fsum2dlemstep 11375 fsumiun 11418 fprod2dlemstep 11563 |
Copyright terms: Public domain | W3C validator |