| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2i | Unicode version | ||
| Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1i.1 |
|
| Ref | Expression |
|---|---|
| uneq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 |
. 2
| |
| 2 | uneq2 3352 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: un4 3364 unundir 3366 difun2 3571 difdifdirss 3576 qdass 3763 qdassr 3764 unisuc 4504 iunsuc 4511 fmptap 5829 fvsnun1 5836 rdgival 6528 rdg0 6533 undifdc 7086 exmidfodomrlemim 7379 djuassen 7399 facnn 10949 fac0 10950 fsum2dlemstep 11945 fsumiun 11988 fprod2dlemstep 12133 plyun0 15410 lgsquadlem3 15758 |
| Copyright terms: Public domain | W3C validator |