| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2i | Unicode version | ||
| Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1i.1 |
|
| Ref | Expression |
|---|---|
| uneq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 |
. 2
| |
| 2 | uneq2 3321 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: un4 3333 unundir 3335 difun2 3540 difdifdirss 3545 qdass 3730 qdassr 3731 unisuc 4461 iunsuc 4468 fmptap 5776 fvsnun1 5783 rdgival 6470 rdg0 6475 undifdc 7023 exmidfodomrlemim 7311 djuassen 7331 facnn 10874 fac0 10875 fsum2dlemstep 11778 fsumiun 11821 fprod2dlemstep 11966 plyun0 15241 lgsquadlem3 15589 |
| Copyright terms: Public domain | W3C validator |