ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2i Unicode version

Theorem uneq2i 3314
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
uneq1i.1  |-  A  =  B
Assertion
Ref Expression
uneq2i  |-  ( C  u.  A )  =  ( C  u.  B
)

Proof of Theorem uneq2i
StepHypRef Expression
1 uneq1i.1 . 2  |-  A  =  B
2 uneq2 3311 . 2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
31, 2ax-mp 5 1  |-  ( C  u.  A )  =  ( C  u.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  un4  3323  unundir  3325  difun2  3530  difdifdirss  3535  qdass  3719  qdassr  3720  unisuc  4448  iunsuc  4455  fmptap  5752  fvsnun1  5759  rdgival  6440  rdg0  6445  undifdc  6985  exmidfodomrlemim  7268  djuassen  7284  facnn  10819  fac0  10820  fsum2dlemstep  11599  fsumiun  11642  fprod2dlemstep  11787  plyun0  14972  lgsquadlem3  15320
  Copyright terms: Public domain W3C validator