ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2i Unicode version

Theorem uneq2i 3311
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
uneq1i.1  |-  A  =  B
Assertion
Ref Expression
uneq2i  |-  ( C  u.  A )  =  ( C  u.  B
)

Proof of Theorem uneq2i
StepHypRef Expression
1 uneq1i.1 . 2  |-  A  =  B
2 uneq2 3308 . 2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
31, 2ax-mp 5 1  |-  ( C  u.  A )  =  ( C  u.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158
This theorem is referenced by:  un4  3320  unundir  3322  difun2  3527  difdifdirss  3532  qdass  3716  qdassr  3717  unisuc  4445  iunsuc  4452  fmptap  5749  fvsnun1  5756  rdgival  6437  rdg0  6442  undifdc  6982  exmidfodomrlemim  7263  djuassen  7279  facnn  10801  fac0  10802  fsum2dlemstep  11580  fsumiun  11623  fprod2dlemstep  11768  plyun0  14915  lgsquadlem3  15236
  Copyright terms: Public domain W3C validator