ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2i Unicode version

Theorem uneq2i 3273
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
uneq1i.1  |-  A  =  B
Assertion
Ref Expression
uneq2i  |-  ( C  u.  A )  =  ( C  u.  B
)

Proof of Theorem uneq2i
StepHypRef Expression
1 uneq1i.1 . 2  |-  A  =  B
2 uneq2 3270 . 2  |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
31, 2ax-mp 5 1  |-  ( C  u.  A )  =  ( C  u.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120
This theorem is referenced by:  un4  3282  unundir  3284  difun2  3488  difdifdirss  3493  qdass  3673  qdassr  3674  unisuc  4391  iunsuc  4398  fmptap  5675  fvsnun1  5682  rdgival  6350  rdg0  6355  undifdc  6889  exmidfodomrlemim  7157  djuassen  7173  facnn  10640  fac0  10641  fsum2dlemstep  11375  fsumiun  11418  fprod2dlemstep  11563
  Copyright terms: Public domain W3C validator