ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un4 Unicode version

Theorem un4 3282
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un4  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D )
)

Proof of Theorem un4
StepHypRef Expression
1 un12 3280 . . 3  |-  ( B  u.  ( C  u.  D ) )  =  ( C  u.  ( B  u.  D )
)
21uneq2i 3273 . 2  |-  ( A  u.  ( B  u.  ( C  u.  D
) ) )  =  ( A  u.  ( C  u.  ( B  u.  D ) ) )
3 unass 3279 . 2  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( A  u.  ( B  u.  ( C  u.  D ) ) )
4 unass 3279 . 2  |-  ( ( A  u.  C )  u.  ( B  u.  D ) )  =  ( A  u.  ( C  u.  ( B  u.  D ) ) )
52, 3, 43eqtr4i 2196 1  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120
This theorem is referenced by:  unundi  3283  unundir  3284  xpun  4665  resasplitss  5367
  Copyright terms: Public domain W3C validator