ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un4 Unicode version

Theorem un4 3332
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un4  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D )
)

Proof of Theorem un4
StepHypRef Expression
1 un12 3330 . . 3  |-  ( B  u.  ( C  u.  D ) )  =  ( C  u.  ( B  u.  D )
)
21uneq2i 3323 . 2  |-  ( A  u.  ( B  u.  ( C  u.  D
) ) )  =  ( A  u.  ( C  u.  ( B  u.  D ) ) )
3 unass 3329 . 2  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( A  u.  ( B  u.  ( C  u.  D ) ) )
4 unass 3329 . 2  |-  ( ( A  u.  C )  u.  ( B  u.  D ) )  =  ( A  u.  ( C  u.  ( B  u.  D ) ) )
52, 3, 43eqtr4i 2235 1  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1372    u. cun 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169
This theorem is referenced by:  unundi  3333  unundir  3334  xpun  4735  resasplitss  5454
  Copyright terms: Public domain W3C validator