ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un4 Unicode version

Theorem un4 3319
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un4  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D )
)

Proof of Theorem un4
StepHypRef Expression
1 un12 3317 . . 3  |-  ( B  u.  ( C  u.  D ) )  =  ( C  u.  ( B  u.  D )
)
21uneq2i 3310 . 2  |-  ( A  u.  ( B  u.  ( C  u.  D
) ) )  =  ( A  u.  ( C  u.  ( B  u.  D ) ) )
3 unass 3316 . 2  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( A  u.  ( B  u.  ( C  u.  D ) ) )
4 unass 3316 . 2  |-  ( ( A  u.  C )  u.  ( B  u.  D ) )  =  ( A  u.  ( C  u.  ( B  u.  D ) ) )
52, 3, 43eqtr4i 2224 1  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157
This theorem is referenced by:  unundi  3320  unundir  3321  xpun  4720  resasplitss  5433
  Copyright terms: Public domain W3C validator