ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un4 Unicode version

Theorem un4 3263
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un4  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D )
)

Proof of Theorem un4
StepHypRef Expression
1 un12 3261 . . 3  |-  ( B  u.  ( C  u.  D ) )  =  ( C  u.  ( B  u.  D )
)
21uneq2i 3254 . 2  |-  ( A  u.  ( B  u.  ( C  u.  D
) ) )  =  ( A  u.  ( C  u.  ( B  u.  D ) ) )
3 unass 3260 . 2  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( A  u.  ( B  u.  ( C  u.  D ) ) )
4 unass 3260 . 2  |-  ( ( A  u.  C )  u.  ( B  u.  D ) )  =  ( A  u.  ( C  u.  ( B  u.  D ) ) )
52, 3, 43eqtr4i 2185 1  |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1332    u. cun 3096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102
This theorem is referenced by:  unundi  3264  unundir  3265  xpun  4640  resasplitss  5342
  Copyright terms: Public domain W3C validator