Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unundir | GIF version |
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
unundir | ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidm 3265 | . . 3 ⊢ (𝐶 ∪ 𝐶) = 𝐶 | |
2 | 1 | uneq2i 3273 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ 𝐶) |
3 | un4 3282 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐶)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) | |
4 | 2, 3 | eqtr3i 2188 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∪ cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |