ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unundir GIF version

Theorem unundir 3343
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundir ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem unundir
StepHypRef Expression
1 unidm 3324 . . 3 (𝐶𝐶) = 𝐶
21uneq2i 3332 . 2 ((𝐴𝐵) ∪ (𝐶𝐶)) = ((𝐴𝐵) ∪ 𝐶)
3 un4 3341 . 2 ((𝐴𝐵) ∪ (𝐶𝐶)) = ((𝐴𝐶) ∪ (𝐵𝐶))
42, 3eqtr3i 2230 1 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator