ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unundir GIF version

Theorem unundir 3289
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundir ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem unundir
StepHypRef Expression
1 unidm 3270 . . 3 (𝐶𝐶) = 𝐶
21uneq2i 3278 . 2 ((𝐴𝐵) ∪ (𝐶𝐶)) = ((𝐴𝐵) ∪ 𝐶)
3 un4 3287 . 2 ((𝐴𝐵) ∪ (𝐶𝐶)) = ((𝐴𝐶) ∪ (𝐵𝐶))
42, 3eqtr3i 2193 1 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1348  cun 3119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator