ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un00 Unicode version

Theorem un00 3414
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )

Proof of Theorem un00
StepHypRef Expression
1 uneq12 3230 . . 3  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  ( (/)  u.  (/) ) )
2 un0 3401 . . 3  |-  ( (/)  u.  (/) )  =  (/)
31, 2eqtrdi 2189 . 2  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  (/) )
4 ssun1 3244 . . . . 5  |-  A  C_  ( A  u.  B
)
5 sseq2 3126 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( A 
C_  ( A  u.  B )  <->  A  C_  (/) ) )
64, 5mpbii 147 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  A  C_  (/) )
7 ss0b 3407 . . . 4  |-  ( A 
C_  (/)  <->  A  =  (/) )
86, 7sylib 121 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  A  =  (/) )
9 ssun2 3245 . . . . 5  |-  B  C_  ( A  u.  B
)
10 sseq2 3126 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( B 
C_  ( A  u.  B )  <->  B  C_  (/) ) )
119, 10mpbii 147 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  B  C_  (/) )
12 ss0b 3407 . . . 4  |-  ( B 
C_  (/)  <->  B  =  (/) )
1311, 12sylib 121 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  B  =  (/) )
148, 13jca 304 . 2  |-  ( ( A  u.  B )  =  (/)  ->  ( A  =  (/)  /\  B  =  (/) ) )
153, 14impbii 125 1  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332    u. cun 3074    C_ wss 3076   (/)c0 3368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369
This theorem is referenced by:  undisj1  3425  undisj2  3426  disjpr2  3595
  Copyright terms: Public domain W3C validator