ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un00 Unicode version

Theorem un00 3471
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )

Proof of Theorem un00
StepHypRef Expression
1 uneq12 3286 . . 3  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  ( (/)  u.  (/) ) )
2 un0 3458 . . 3  |-  ( (/)  u.  (/) )  =  (/)
31, 2eqtrdi 2226 . 2  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  (/) )
4 ssun1 3300 . . . . 5  |-  A  C_  ( A  u.  B
)
5 sseq2 3181 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( A 
C_  ( A  u.  B )  <->  A  C_  (/) ) )
64, 5mpbii 148 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  A  C_  (/) )
7 ss0b 3464 . . . 4  |-  ( A 
C_  (/)  <->  A  =  (/) )
86, 7sylib 122 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  A  =  (/) )
9 ssun2 3301 . . . . 5  |-  B  C_  ( A  u.  B
)
10 sseq2 3181 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( B 
C_  ( A  u.  B )  <->  B  C_  (/) ) )
119, 10mpbii 148 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  B  C_  (/) )
12 ss0b 3464 . . . 4  |-  ( B 
C_  (/)  <->  B  =  (/) )
1311, 12sylib 122 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  B  =  (/) )
148, 13jca 306 . 2  |-  ( ( A  u.  B )  =  (/)  ->  ( A  =  (/)  /\  B  =  (/) ) )
153, 14impbii 126 1  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    u. cun 3129    C_ wss 3131   (/)c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425
This theorem is referenced by:  undisj1  3482  undisj2  3483  disjpr2  3658
  Copyright terms: Public domain W3C validator