ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un00 Unicode version

Theorem un00 3538
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )

Proof of Theorem un00
StepHypRef Expression
1 uneq12 3353 . . 3  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  ( (/)  u.  (/) ) )
2 un0 3525 . . 3  |-  ( (/)  u.  (/) )  =  (/)
31, 2eqtrdi 2278 . 2  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  u.  B )  =  (/) )
4 ssun1 3367 . . . . 5  |-  A  C_  ( A  u.  B
)
5 sseq2 3248 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( A 
C_  ( A  u.  B )  <->  A  C_  (/) ) )
64, 5mpbii 148 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  A  C_  (/) )
7 ss0b 3531 . . . 4  |-  ( A 
C_  (/)  <->  A  =  (/) )
86, 7sylib 122 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  A  =  (/) )
9 ssun2 3368 . . . . 5  |-  B  C_  ( A  u.  B
)
10 sseq2 3248 . . . . 5  |-  ( ( A  u.  B )  =  (/)  ->  ( B 
C_  ( A  u.  B )  <->  B  C_  (/) ) )
119, 10mpbii 148 . . . 4  |-  ( ( A  u.  B )  =  (/)  ->  B  C_  (/) )
12 ss0b 3531 . . . 4  |-  ( B 
C_  (/)  <->  B  =  (/) )
1311, 12sylib 122 . . 3  |-  ( ( A  u.  B )  =  (/)  ->  B  =  (/) )
148, 13jca 306 . 2  |-  ( ( A  u.  B )  =  (/)  ->  ( A  =  (/)  /\  B  =  (/) ) )
153, 14impbii 126 1  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    u. cun 3195    C_ wss 3197   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  undisj1  3549  undisj2  3550  disjpr2  3730
  Copyright terms: Public domain W3C validator