| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vss | GIF version | ||
| Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| vss | ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3219 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | 1 | biantrur 303 | . 2 ⊢ (V ⊆ 𝐴 ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) |
| 3 | eqss 3212 | . 2 ⊢ (𝐴 = V ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) | |
| 4 | 2, 3 | bitr4i 187 | 1 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 Vcvv 2773 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 df-in 3176 df-ss 3183 |
| This theorem is referenced by: vdif0im 3530 |
| Copyright terms: Public domain | W3C validator |