![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vss | GIF version |
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
vss | ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3069 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | 1 | biantrur 299 | . 2 ⊢ (V ⊆ 𝐴 ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) |
3 | eqss 3062 | . 2 ⊢ (𝐴 = V ↔ (𝐴 ⊆ V ∧ V ⊆ 𝐴)) | |
4 | 2, 3 | bitr4i 186 | 1 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1299 Vcvv 2641 ⊆ wss 3021 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-11 1452 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-v 2643 df-in 3027 df-ss 3034 |
This theorem is referenced by: vdif0im 3375 |
Copyright terms: Public domain | W3C validator |