ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord Unicode version

Theorem caovord 6013
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
caovord.1  |-  A  e. 
_V
caovord.2  |-  B  e. 
_V
caovord.3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
Assertion
Ref Expression
caovord  |-  ( C  e.  S  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, R, y, z    x, S, y, z

Proof of Theorem caovord
StepHypRef Expression
1 oveq1 5849 . . . 4  |-  ( z  =  C  ->  (
z F A )  =  ( C F A ) )
2 oveq1 5849 . . . 4  |-  ( z  =  C  ->  (
z F B )  =  ( C F B ) )
31, 2breq12d 3995 . . 3  |-  ( z  =  C  ->  (
( z F A ) R ( z F B )  <->  ( C F A ) R ( C F B ) ) )
43bibi2d 231 . 2  |-  ( z  =  C  ->  (
( A R B  <-> 
( z F A ) R ( z F B ) )  <-> 
( A R B  <-> 
( C F A ) R ( C F B ) ) ) )
5 caovord.1 . . 3  |-  A  e. 
_V
6 caovord.2 . . 3  |-  B  e. 
_V
7 breq1 3985 . . . . . 6  |-  ( x  =  A  ->  (
x R y  <->  A R
y ) )
8 oveq2 5850 . . . . . . 7  |-  ( x  =  A  ->  (
z F x )  =  ( z F A ) )
98breq1d 3992 . . . . . 6  |-  ( x  =  A  ->  (
( z F x ) R ( z F y )  <->  ( z F A ) R ( z F y ) ) )
107, 9bibi12d 234 . . . . 5  |-  ( x  =  A  ->  (
( x R y  <-> 
( z F x ) R ( z F y ) )  <-> 
( A R y  <-> 
( z F A ) R ( z F y ) ) ) )
11 breq2 3986 . . . . . 6  |-  ( y  =  B  ->  ( A R y  <->  A R B ) )
12 oveq2 5850 . . . . . . 7  |-  ( y  =  B  ->  (
z F y )  =  ( z F B ) )
1312breq2d 3994 . . . . . 6  |-  ( y  =  B  ->  (
( z F A ) R ( z F y )  <->  ( z F A ) R ( z F B ) ) )
1411, 13bibi12d 234 . . . . 5  |-  ( y  =  B  ->  (
( A R y  <-> 
( z F A ) R ( z F y ) )  <-> 
( A R B  <-> 
( z F A ) R ( z F B ) ) ) )
1510, 14sylan9bb 458 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x R y  <->  ( z F x ) R ( z F y ) )  <->  ( A R B  <->  ( z F A ) R ( z F B ) ) ) )
1615imbi2d 229 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( z  e.  S  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )  <->  ( z  e.  S  ->  ( A R B  <->  ( z F A ) R ( z F B ) ) ) ) )
17 caovord.3 . . 3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
185, 6, 16, 17vtocl2 2781 . 2  |-  ( z  e.  S  ->  ( A R B  <->  ( z F A ) R ( z F B ) ) )
194, 18vtoclga 2792 1  |-  ( C  e.  S  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  caovord2  6014  caovord3  6015
  Copyright terms: Public domain W3C validator