ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord Unicode version

Theorem caovord 6024
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
caovord.1  |-  A  e. 
_V
caovord.2  |-  B  e. 
_V
caovord.3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
Assertion
Ref Expression
caovord  |-  ( C  e.  S  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, R, y, z    x, S, y, z

Proof of Theorem caovord
StepHypRef Expression
1 oveq1 5860 . . . 4  |-  ( z  =  C  ->  (
z F A )  =  ( C F A ) )
2 oveq1 5860 . . . 4  |-  ( z  =  C  ->  (
z F B )  =  ( C F B ) )
31, 2breq12d 4002 . . 3  |-  ( z  =  C  ->  (
( z F A ) R ( z F B )  <->  ( C F A ) R ( C F B ) ) )
43bibi2d 231 . 2  |-  ( z  =  C  ->  (
( A R B  <-> 
( z F A ) R ( z F B ) )  <-> 
( A R B  <-> 
( C F A ) R ( C F B ) ) ) )
5 caovord.1 . . 3  |-  A  e. 
_V
6 caovord.2 . . 3  |-  B  e. 
_V
7 breq1 3992 . . . . . 6  |-  ( x  =  A  ->  (
x R y  <->  A R
y ) )
8 oveq2 5861 . . . . . . 7  |-  ( x  =  A  ->  (
z F x )  =  ( z F A ) )
98breq1d 3999 . . . . . 6  |-  ( x  =  A  ->  (
( z F x ) R ( z F y )  <->  ( z F A ) R ( z F y ) ) )
107, 9bibi12d 234 . . . . 5  |-  ( x  =  A  ->  (
( x R y  <-> 
( z F x ) R ( z F y ) )  <-> 
( A R y  <-> 
( z F A ) R ( z F y ) ) ) )
11 breq2 3993 . . . . . 6  |-  ( y  =  B  ->  ( A R y  <->  A R B ) )
12 oveq2 5861 . . . . . . 7  |-  ( y  =  B  ->  (
z F y )  =  ( z F B ) )
1312breq2d 4001 . . . . . 6  |-  ( y  =  B  ->  (
( z F A ) R ( z F y )  <->  ( z F A ) R ( z F B ) ) )
1411, 13bibi12d 234 . . . . 5  |-  ( y  =  B  ->  (
( A R y  <-> 
( z F A ) R ( z F y ) )  <-> 
( A R B  <-> 
( z F A ) R ( z F B ) ) ) )
1510, 14sylan9bb 459 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x R y  <->  ( z F x ) R ( z F y ) )  <->  ( A R B  <->  ( z F A ) R ( z F B ) ) ) )
1615imbi2d 229 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( z  e.  S  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )  <->  ( z  e.  S  ->  ( A R B  <->  ( z F A ) R ( z F B ) ) ) ) )
17 caovord.3 . . 3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
185, 6, 16, 17vtocl2 2785 . 2  |-  ( z  e.  S  ->  ( A R B  <->  ( z F A ) R ( z F B ) ) )
194, 18vtoclga 2796 1  |-  ( C  e.  S  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   class class class wbr 3989  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  caovord2  6025  caovord3  6026
  Copyright terms: Public domain W3C validator