| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovord | Unicode version | ||
| Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) |
| Ref | Expression |
|---|---|
| caovord.1 |
|
| caovord.2 |
|
| caovord.3 |
|
| Ref | Expression |
|---|---|
| caovord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5932 |
. . . 4
| |
| 2 | oveq1 5932 |
. . . 4
| |
| 3 | 1, 2 | breq12d 4047 |
. . 3
|
| 4 | 3 | bibi2d 232 |
. 2
|
| 5 | caovord.1 |
. . 3
| |
| 6 | caovord.2 |
. . 3
| |
| 7 | breq1 4037 |
. . . . . 6
| |
| 8 | oveq2 5933 |
. . . . . . 7
| |
| 9 | 8 | breq1d 4044 |
. . . . . 6
|
| 10 | 7, 9 | bibi12d 235 |
. . . . 5
|
| 11 | breq2 4038 |
. . . . . 6
| |
| 12 | oveq2 5933 |
. . . . . . 7
| |
| 13 | 12 | breq2d 4046 |
. . . . . 6
|
| 14 | 11, 13 | bibi12d 235 |
. . . . 5
|
| 15 | 10, 14 | sylan9bb 462 |
. . . 4
|
| 16 | 15 | imbi2d 230 |
. . 3
|
| 17 | caovord.3 |
. . 3
| |
| 18 | 5, 6, 16, 17 | vtocl2 2819 |
. 2
|
| 19 | 4, 18 | vtoclga 2830 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: caovord2 6100 caovord3 6101 |
| Copyright terms: Public domain | W3C validator |