Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovord | Unicode version |
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) |
Ref | Expression |
---|---|
caovord.1 | |
caovord.2 | |
caovord.3 |
Ref | Expression |
---|---|
caovord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5849 | . . . 4 | |
2 | oveq1 5849 | . . . 4 | |
3 | 1, 2 | breq12d 3995 | . . 3 |
4 | 3 | bibi2d 231 | . 2 |
5 | caovord.1 | . . 3 | |
6 | caovord.2 | . . 3 | |
7 | breq1 3985 | . . . . . 6 | |
8 | oveq2 5850 | . . . . . . 7 | |
9 | 8 | breq1d 3992 | . . . . . 6 |
10 | 7, 9 | bibi12d 234 | . . . . 5 |
11 | breq2 3986 | . . . . . 6 | |
12 | oveq2 5850 | . . . . . . 7 | |
13 | 12 | breq2d 3994 | . . . . . 6 |
14 | 11, 13 | bibi12d 234 | . . . . 5 |
15 | 10, 14 | sylan9bb 458 | . . . 4 |
16 | 15 | imbi2d 229 | . . 3 |
17 | caovord.3 | . . 3 | |
18 | 5, 6, 16, 17 | vtocl2 2781 | . 2 |
19 | 4, 18 | vtoclga 2792 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 class class class wbr 3982 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: caovord2 6014 caovord3 6015 |
Copyright terms: Public domain | W3C validator |